Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Access: Use of this item is restricted to the UNT Community
Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Date: May 2004
Creator: Akinola, Adeniyi O.
System: The UNT Digital Library
Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase. (open access)

Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase.

The gas phase reactions of atomic chlorine with hydrogen sulfide, ammonia, benzene, and ethylene are investigated using the laser flash photolysis / resonance fluorescence experimental technique. In addition, the kinetics of the reverse processes for the latter two elementary reactions are also studied experimentally. The absolute rate constants for these processes are measured over a wide range of conditions, and the results offer new accurate information about the reactivity and thermochemistry of these systems. The temperature dependences of these reactions are interpreted via the Arrhenius equation, which yields significantly negative activation energies for the reaction of the chlorine atom and hydrogen sulfide as well as for that between the phenyl radical and hydrogen chloride. Positive activation energies which are smaller than the overall endothermicity are measured for the reactions between atomic chlorine with ammonia and ethylene, which suggests that the reverse processes for these reactions also possess negative activation energies. The enthalpies of formation of the phenyl and β-chlorovinyl are assessed via the third-law method. The stability and reactivity of each reaction system is further rationalized based on potential energy surfaces, computed with high-level ab initio quantum mechanical methods and refined through the inclusion of effects which arise from the …
Date: August 2009
Creator: Alecu, Ionut M.
System: The UNT Digital Library
Computational Studies of Selected Ruthenium Catalysis Reactions. (open access)

Computational Studies of Selected Ruthenium Catalysis Reactions.

Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H …
Date: December 2007
Creator: Barakat, Khaldoon A.
System: The UNT Digital Library
Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry (open access)

Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Web-based homework systems are becoming more common in general chemistry as instructors face ever-increasing enrollment. Yet providing meaningful feedback on assignments remains of the utmost importance. Chemistry instructors consider completion of homework integral to students' success in chemistry, yet only a few studies have compared the use of Web-based systems to the traditional paper-and-pencil homework within general chemistry. This study compares the traditional homework system to four different Web-based systems. Data from eight, semester classes consisting of a diagnostic pre-test, final semester grades, and the number of successful and unsuccessful students are analyzed. Statistically significant results suggest a chemistry instructor should carefully consider options when selecting a homework system.
Date: May 2009
Creator: Belland, Joshua
System: The UNT Digital Library

Layered Double Hydroxides and the Origins of Life on Earth

Access: Use of this item is restricted to the UNT Community
A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to …
Date: May 2001
Creator: Brister, Brian
System: The UNT Digital Library

Synthesis and X-ray Diffraction Structure of 8,9-Dichloropyrrolo[1,2-a]perimidin-10-one

Access: Use of this item is restricted to the UNT Community
Treatment of dichloromaleic anhydride and 1,8-diaminonaphthalene in either benzene or toluene under refluxing conditions gives low yields of the new heterocyclic compound 8,9-dichloropyrrolo[1,2-a]perimidin-10-one. This product has been isolated and characterized in solution by NMR, IR, and UV/vis spectroscopies, and the solid-state structure of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been established by X-ray crystallography. The nature of the HOMO and LUMO levels of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been studied by extended Hückel molecular orbital calculations.
Date: August 2003
Creator: Chen, Tao
System: The UNT Digital Library
Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands. (open access)

Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands.

Symmetrical cage-annulated podands were synthesized via highly efficient synthetic strategies. Mechanisms to account for the key reaction steps in the syntheses are proposed; the proposed mechanisms receive support from the intermediates that have been isolated and characterized. An unusual complexation-promoted elimination reaction was studied, and a mechanism is proposed to account for the course of this reaction. This unusual elimination may generalized to other rigid systems and thus may extend our understanding of the role played by the host molecules in "cation-capture, anion-activation" via complexation with guest molecules. Thus, host-guest interaction serves not only to activate the anion but also may activate the leaving groups that participate in the complexation. Complexation-promoted elimination provides a convenient method to desymmetrize the cage while avoiding protection/deprotection steps. In addition, it offers a convenient method to prepare a chiral cage spacer by introducing 10 chiral centers into the host system in a single synthetic step. Cage-annulated monocyclic hosts that contain a cage-butylenoxy spacer were synthesized. Comparison of their metal ion complexation behavior as revealed by the results of electrospray ionization mass spectrometry (ESI-MS), alkali metal picrate extraction, and pseudohydroxide extraction with those displayed by the corresponding hosts that contain cage-ethylenoxy or cage-propylenoxy spacers reveals …
Date: May 2003
Creator: Chen, Zhibing
System: The UNT Digital Library
Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance. (open access)

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The …
Date: December 2009
Creator: Conrad, Heidi A.
System: The UNT Digital Library
NMR Study of n-Propyllithium Aggregates (open access)

NMR Study of n-Propyllithium Aggregates

A variable temperature 1H, 13C, and 6Li NMR study of n-propyl-6Li-lithium showed five different aggregates, similar to that in the literature as (RLi)n, n= 6, 8, 9, 9, 9. There were also a number of additional new species, identified as lithium hydride containing aggregates. Unexpectedly, a series of 13C{1H} 1-D NMR experiments with selective 6Li decoupling showed evidence for 13C-6Li spin-spin coupling between the previously reported (RLi)n aggregates and various hydride species.
Date: December 2002
Creator: Davis, James W.
System: The UNT Digital Library
Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects (open access)

Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects

The purpose of this thesis is to analyze the thermochemical properties of solutes in nonelectrolyte pure solvents and to develop mathematical expressions with the ability to describe and predict solution behavior using mobile order theory. Solubilities of pesticides (monuron, diuron, and hexachlorobenzene), polycyclic aromatic hydrocarbons (biphenyl, acenaphthene, and phenanthrene), and the organometallic ferrocene were studied in a wide array of solvents. Mobile order theory predictive equations were derived and percent average absolute deviations between experimental and calculated mole fraction solubilities for each solute were as follows: monuron in 21 non-alcoholic solvents (48.4%), diuron in 28 non-alcoholic solvents (60.1%), hexachlorobenzene (210%), biphenyl (13.0%), acenaphthene (37.8%), phenanthrene (41.3%), and ferrocene (107.8%). Solute descriptors using the Abraham solvation model were also calculated for monuron and diuron. Coefficients in the general solvation equation were known for all the solvents and solute descriptors calculated using multilinear regression techniques.
Date: August 2004
Creator: De Fina, Karina M.
System: The UNT Digital Library
Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers. (open access)

Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.

Density functional (ca, BLYP, BPW91, B3LYP and B3PW91), MP2 and CCSD(T) methods in combination with LANL2DZ or cc-pVxZ-PP (where x=D(double), T(triple) Q(quadruple), and 5(quintuple)) basis sets have been employed in computing electronic transition energies of zinc and cadmium monomers. CCSD(T)/aug-cc-pV5Z-PP combination finds values that are 150 cm-1 from the experimental value for the zinc monomer and 240 cm-1 remove from the cadmium monomer excitation experimental value. These method/basis set combinations are also used to find spectroscopic values (re, De, we, wexe, Be , and Te) that rival experimental values for dimers and excimers. Examples of this can be seen with the CCSD(T)/aug-cc-pV5Z-PP combination phosphorescent emission results. The values found are within 120 cm-1 of the zinc emission energy and 290 cm-1 of the cadmium emission energy. While this combination rigorously models spectroscopic constants for monomers, dimers, and excimers, it does not efficiently model these constants for larger clusters with available modern computational resources. It is important to show spectroscopic trends (bonding, phosphorescent excitation and emissions) as clusters increase as the monomer and dimer emission energies do not model solid state metallophilic interactions and phosphorescence. The MP2/LANL2DZ combinations show qualitative cooperative bonding trends in group oligomers and extended excimers as size …
Date: August 2008
Creator: Determan, John J.
System: The UNT Digital Library

Mechanisms of Methoxide Ion Substitution and Acid- Catalyzed Z/E Isomerization of N-Methoxyimines

Access: Use of this item is restricted to the UNT Community
The second order rate constants for nucleophilic substitution by methoxide of (Z)- and (E)-O-methylbenzohydroximoyl fluorides [C6H4C(F)=NOCH3] with various substituents on the phenyl ring [p-OCH3 (1h, 2h), p-CH3 (1g, 2g), p-Cl (1f, 2f), p-H (1e, 2e), (3,5)-bis-CF3 (1i, 2i)] in 90:10 DMSO:MeOH have been measured. A Hammett plot of these rate constants vs σ values gave positive ρ values of 2.95 (Z isomer) and 3.29 (E isomer). Comparison of these rates with methoxide substitution rates for Omethylbenzohydroximoyl bromide [C6H4C(Br)=NOCH3] and Omethylbenzohydroximoyl chloride [C6H4C(Cl)=NOCH3] reveal an element effect for the Z isomers of Br:Cl:F(1e) = 2.21:1.00:79.7 and for the E isomers of Cl:F(2e) = 1.00:18.3. With the p-OCH3-imidoyl halides the following element effects are found: Br:Cl:F(1h) = 2.78:1.00:73.1 for the Z isomer and Br:Cl:F(2h) = 1.97:1.00:12.1 for the E isomer. Measurement of activation parameters revealed ∆S≠ = -17 eu for 1e and ∆S≠ = -9.9 eu for 2e. Ab initio calculations (HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6- 31+G*//HF/6-31+G*, HF-SCIPCM/6-31+G*//HF/6-31+G*) were performed to define the reaction surface. These calculations demonstrate a relatively large barrier for nucleophilic attack in relation to halogen loss and support the experimental findings that this reaction proceeds by an addition-elimination mechanism (AN# + DN). The imidoyl fluorides have been used to synthesize …
Date: December 2001
Creator: Dolliver, Debra D.
System: The UNT Digital Library
General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States. (open access)

General Chemistry Topic Coverage (GCTC) comparison between community colleges and universities in the United States.

This study is based on survey responses of 224 general chemistry instructors at United States (U.S.) community colleges and universities representing 46 states. The mean values of General Chemistry Topic Coverage (GCTC) score, developed by this researcher specifically for this dissertation study as a measure of course content, were statistically analyzed. The aim of this study is to answer five research questions: (a) Is there a difference in mean GCTC scores between U.S. community colleges and four-year colleges and universities? (b) If there is a difference in mean GCTC score between the two study groups, what are the observed differences in subtopics covered between community colleges and four-year colleges and universities? (c) Considering both community colleges and universities, is there a difference in mean GCTC score between the different designated U.S. regions? (d) Considering both community college and university professors, is there a difference in GCTC score for professors with a master's degree compared to those with a doctorate?, and (e) Is there a correlation between GCTC score and the percentage of students that major in science? Results indicate that there is a statistically significant difference in course content between community colleges and universities, there is a statistically significant difference …
Date: December 2006
Creator: El-Ashmawy, Amina Khalifa
System: The UNT Digital Library
An NMR study of 2-ethyl-1-butyllithium and of 2-ethyl-1-butyllithium/lithium 2-ethyl-1-butoxide mixed aggregates (open access)

An NMR study of 2-ethyl-1-butyllithium and of 2-ethyl-1-butyllithium/lithium 2-ethyl-1-butoxide mixed aggregates

A 1H, 13C, and 6Li NMR study of 2-ethyl-1-butyllithium indicated that 2-ethyl-1-butyllithium exists only as a hexameric aggregate over the entire temperature range of 25 to - 92.1 ° C in cyclopentane. Reacting 2-ethyl-1-butyllithium with 2-ethyl-1-butanol resulted in alkyllithium/lithium alkoxide mixed aggregates, apparently of the form Ra(RO)bLia+b. A multinuclear, variable temperature NMR study of samples with O:Li ratios of 0.2 and 0.4 showed, in addition to the alkyllithium, the formation of four mixed aggregates, one of them probably an octamer. Higher O:Li ratio samples showed the formation of several other mixed aggregates. Mixing 2-ethyl-1-butyllithium with independently prepared lithium 2-ethyl-1-butoxide formed the same mixed aggregates formed by in situ synthesis of lithium alkoxide. Lithium 2-ethyl-1-butoxide also exists as aggregates in cyclopentane.
Date: May 2001
Creator: Ferreira, Aluisio V. C.
System: The UNT Digital Library
Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces (open access)

Electrochemical Study of Under-Potential Deposition Processes on Transition Metal Surfaces

Copper under-potential deposition (UPD) on iridium was studied due to important implications it presents to the semiconductor industry. Copper UPD allows controlled superfilling on sub-micrometer trenches; iridium has characteristics to prevent copper interconnect penetration into the surrounding dielectric. Copper UPD is not favored on iridium oxides but data shows copper over-potential deposition when lower oxidation state Ir oxide is formed. Effect of anions in solution on silver UPD at platinum (Pt) electrodes was studied with the electrochemical quartz crystal microbalance. Silver UPD forms about one monolayer in the three different electrolytes employed. When phosphoric acid is used, silver oxide growth is identified due to presence of low coverage hydrous oxide species at potentials prior to the monolayer oxide region oxide region.
Date: August 2006
Creator: Flores Araujo, Sarah Cecilia
System: The UNT Digital Library

Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

Access: Use of this item is restricted to the UNT Community
The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.
Date: December 2002
Creator: Halcom-Yarberry, Faith Marie
System: The UNT Digital Library
Synthesis of Crown Ether/Ammonium Salt for Electron Transfer Study (open access)

Synthesis of Crown Ether/Ammonium Salt for Electron Transfer Study

The theoretical model of Beratan and Onuchic predicts a large attenuation of ET rates through hydrogen bonds; however, the effect of individual hydrogen bond on electron transfer reaction has not been systematically studied. The organic complexes in this study are a series of crown ether/ammonium salt, which incorporate a redox partner on each component of the complex. The dimethoxynaphthalene redox donor was attached to the crown ether and a series of ammonium salts was synthesized which bear substituted quinone and naphthoquinone acceptor. The complexes characterization and preliminary electron transfer rate measurement were completed with UV/Vis and steady-state emission spectroscopy.
Date: May 2002
Creator: Han, Dong
System: The UNT Digital Library
Kinetic Studies of Hydroxyl and Hydrogen Atom Reactions (open access)

Kinetic Studies of Hydroxyl and Hydrogen Atom Reactions

Gas phase kinetics of the reactions involving hydroxyl radical and hydrogen atom were studied using experimental and ab initio theoretical techniques. The rate constant for the H + H2S reaction has been measured from 298 to 598 K by the laser photolysis/resonance fluorescence (LP-RF) technique. The transition state theory (TST) analysis coupled with the measurements support the suggestion that the reaction shows significant curvature in the Arrhenius plot. The LP-RF technique was also used to measure the rate constant of the H + CH3Br reaction over the temperature range 400-813 K. TST and density functional theory (DFT) calculations show that the dominant reaction channel is Br-abstraction. The reaction H + CF2=CF-CF=CF2 was first studied by flash photolysis/resonance fluorescence (FP-RF) method. The experiments of this work revealed distinctly non-Arrhenius behavior, which was interpreted in terms of a change in mechanism. DFT calculations suggest that the adduct is CF2H-CF•-CF=CF2. At lower temperatures a mixture of this molecule and CF2•-CFH-CF=CF2 is likely. The theoretical calculations show that H atom migrates in the fluoroethyl radicals through a bridging intermediate, and the barrier height for this process is lower in the less fluorinated ethyl radical. High level computations were also employed in studies of the …
Date: May 2002
Creator: Hu, Xiaohua
System: The UNT Digital Library
Synthesis and characterization of 2-chloro-3-benzylthiopyrrolo[1,2-a]- benzimidazol-1-one and 2,3-di(benzylthio)pyrrolo[1,2-a]benzimidazol-1-one. (open access)

Synthesis and characterization of 2-chloro-3-benzylthiopyrrolo[1,2-a]- benzimidazol-1-one and 2,3-di(benzylthio)pyrrolo[1,2-a]benzimidazol-1-one.

The reaction between o-phenylenediamine and 2,3-dichloromaleic anhydride has been probed and found to give 2,3-dichloropyrrolo[1,2-a]- benzimidazol-1-one as the major product. Chlorine substitution in 2,3-dichloropyrrolo[1,2-a]benzimidazol-1-one by added benzylthiol occurs in the presence of pyridine to provide the corresponding monosulfide and disulfide derivatives. The first benzylthiol ligand undergoes reaction at the C-3 position of the five-membered pyrrolo-1-one ring, with the addition of the second benzylthiol ligand occurring at the remaining chlorine-substituted carbon. The mono- and disulfide derivatives have been isolated and characterized in solution by NMR, IR, and UV-vis spectroscopies, and the solid-state structure of 2,3-di(benzylthio)pyrrolo[1,2-a]benzimidazol-1-one has been established by X-ray crystallography.
Date: December 2003
Creator: Huang, Shih-Huang
System: The UNT Digital Library
Synthesis and Characterization of Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(dichloride), Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione(maleonitriledithiolate), and Platinum(II)(4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(4-Methyl-1,2-benzene dithiol) (open access)

Synthesis and Characterization of Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(dichloride), Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione(maleonitriledithiolate), and Platinum(II)(4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(4-Methyl-1,2-benzene dithiol)

Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl2(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl2(bpcd) (2). Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding 2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl2(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na2mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). The reaction of PtCl2(bpcd) (2) with 4-methyl-1,2-benzene dithiol under basic conditions affords Pt(tdt)(bpcd) (5). Compounds 2-5 have been fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2‑5 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in systems 2-4 has been established by MO calculations at the extended Hückel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives. In addition the new compounds 2-5 have been isolated by column chromatography and characterized by IR, UV-Vis spectroscopy.
Date: December 2009
Creator: Hunt, Sean W.
System: The UNT Digital Library
Preparation of flat dendrimers and polycyclic aromatic hydrocarbons connected via 1,3,5-triethynylbenzene core. (open access)

Preparation of flat dendrimers and polycyclic aromatic hydrocarbons connected via 1,3,5-triethynylbenzene core.

Flat dendrimers, consisting of a hexavalent aromatic core and rigid ethynyl units locked in place by ether connections were developed based upon the divergent synthetic method. Alternating functional groups were adopted on each site of the hexa-substituted benzene, in order to avoid undesired cyclization pathways. The flat structures of conjugated dendrimers would allow investigation on the discotic liquid crystal properties. In addition, these ethylnyl dendrimers are expected to show directed energy and electron transfer with a highly conjugated system, and thus are effective in the preparation of photoreactive materials such as electronic sensors or light harvesting materials. Conjugated polycyclic aromatic hydrocarbons, consisting of naphthalene, anthracene, pyrene, and phenanthrene groups connected via 1,3,5-triethynylbenzene cores, were synthesized. These molecules exhibited luminescence properties and the π-complexation with a mercury trifunctional lewis acid are expected to enhance the phosphorescence in the presence of the heavy metal due to the spin-orbit coupling. Besides, owing to the presence of heavy metal atom in the Au (I) complexes linked by s-bonded triethynyltriphenylene luminophore, the phosphorescence occurs from a metal-centered emission. The conjugated organic luminophores have been developed to produce excellent quantum efficiencies, brightness, and long lifetimes.
Date: December 2008
Creator: Jung, Jiyoung
System: The UNT Digital Library

Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Access: Use of this item is restricted to the UNT Community
The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Date: December 2006
Creator: Kandala, Srikanth
System: The UNT Digital Library

Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds

Access: Use of this item is restricted to the UNT Community
The effect of substituents on the stabilities of cumulenes-ketenes, allenes, diazomethanes and isocyanates and related systems-alkynes, nitriles and nitrile oxides is studied using the density functional theory (B3LYP, SVWN and BP86) and ab initio (HF, MP2) calculations at the 6-31G* basis set level. Using isodesmic reactions, correlation between stabilization energies of cumulenes and substituent group electronegativities (c BE) is established and the results from DFT and MP2 methods are compared with the earlier HF calculations. Calculations revealed that the density functional methods can be used to study the effect of substituents on the stabilities of cumulenes. It is observed that the cumulenes are stabilized by electropositive substituent groups from s -electron donation and p -electron withdrawal and are destabilized by electronegative substituent groups from n-p donation. The calculated geometries of the cumulenes are compared with the available experimental data.High level ab initio and density functional theory calculations have been used to study the energetics of low-barrier hydrogen bond (LBHB) systems. Using substituted formic acid-formate anion complexes as model LBHB systems, hydrogen bond strength is correlated to the pKa mismatch between the hydrogen bond donor and the hydrogen bond acceptor. LBHB model systems are characterized by the 1H-NMR chemical shift calculations. …
Date: August 2000
Creator: Kumar, Ganesh Angusamy
System: The UNT Digital Library
Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis. (open access)

Applications of Nanomanipulation Coupled to Nanospray Mass Spectrometry in Trace Fiber Analysis and Cellular Lipid Analysis.

The novel instrumentation of nanomanipulation coupled to nanospray mass spectrometry and its applications are presented. The nanomanipulator has the resolution of 10nm step sizes allowing for specific fine movement used to probe and characterize objects of interest. Nanospray mass spectrometry only needs a minimum sample volume of 300nl and a minimum sample size of 300attograms to analyze an analyte making it the ideal instrument to couple to nanomanipulation. The nanomanipulator is mounted to an inverted microscope and consists of 4 nano-positioners; these nano-positioners hold end-effectors and other tools used for manipulation. This original coupling has been used to enhance the current abilities of cellular probing and trace fiber analysis. Experiments have been performed to demonstrate the functionality of this instrument and its capabilities. Histidine and caffeine have been sampled directly from single fibers and analyzed. Lipid bodies from cotton seeds have been sampled indirectly and analyzed. The few applications demonstrated are only the beginning of nanomanipulation coupled to nanospray mass spectrometry and the possible applications are numerous especially with the ability to design and fabricate new end-effectors with unique abilities. Future study will be done to further the applications in direct cellular probing including toxicology studies and organelle analysis of …
Date: December 2008
Creator: Ledbetter, Nicole
System: The UNT Digital Library