Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy. (open access)

Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy.

Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage …
Date: December 2003
Creator: Bilyeu, Bryan
System: The UNT Digital Library

Development of a Novel Grease Resistant Functional Coatings for Paper-based Packaging and Assessment of Application by Flexographic Press

Access: Use of this item is restricted to the UNT Community
Recent commercial developments have created a need for alternative materials and methods for imparting oil/grease resistance to paper and/or paperboard used in packaging. The performance of a novel grease resistant functional coating comprised of polyvinyl alcohol (PVA), sodium tetraborate pentahydrate (borate) and acetonedicarboxylic acid (ACDA) and the application of said coating by means of flexographic press is presented herein. Application criteria is developed, testing procedures described, and performance assessment of the developed coating materials are made. SEM images along with contact angle data suggest that coating performance is probably attributable to decreased mean pore size in conjunction with a slightly increased surface contact angle facilitated by crosslinking of PVA molecules by both borate ions and ACDA.
Date: August 2004
Creator: Brown, Robert W.
System: The UNT Digital Library
Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes. (open access)

Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes.

The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenced the formation of the agglomerate. Cured epoxy samples showed evidence of the agglomerate being residual charge driven by maxima and minima in the concentration profiles of thermal conductivity and dielectric permittivity respectively. A hybrid nanocomposite of MLS and aniline functionalized multi walled nanotubes indicated no agglomerates. The influence of environmentally and process driven properties on the nanocomposites was investigated by examination of moisture, ultrasound, microwaves and mechanical fatigue on the properties of the hybrid systems. The results point to the importance of charge screening by adsorbed or reacted water and on nanoparticulates.
Date: May 2005
Creator: Butzloff, Peter Robert
System: The UNT Digital Library

Synthesis and Characterization of Crystalline Assemblies of Functionalized Hydrogel Nanoparticles

Access: Use of this item is restricted to the UNT Community
Two series monodispersed nanoparticles of hydroxylpropyl cellulose (HPC) and functionalized poly-N-isopropylamide (PNIPAM) particles have been synthesized and used as building blocks for creating three-dimensional networks, with two levels of structural hierarchy. The first level is HPC nanoparticles were made from methacrylated or degradable cross-linker attached HPC. These nanoparticles could be stabilized at room temperature by residual methacrylate or degradable groups are present both within and on the exterior of HPC nanoparticles. Controlled release studies have been performed on the particle and networks .The nearly monodispersed nanoparticles have been synthesized on the basis of a natural polymer of hydropropylcellulose (HPC) with a high molecular weight using the precipitation polymerization method and self-assembly of these particles in water results in bright colors. The HPC nanoparticles can be potential using as crosslinkers to increase the hydrogels mechanical properties, such as high transparency and rapid swelling/de-swelling kinetics. The central idea is to prepare colloidal particles containing C=C bonds and to use them as monomers - vinylparticles, to form stable particle assemblies with various architectures. This is accomplished by mixing an aqueous suspension of hydrogel nanoparticles (PNIPAM-co-allylamine) with the organic solvent (dichloromethane) to grow columnar crystals. The hydrogels with such a unique crystal structure behavior …
Date: December 2005
Creator: Cai, Tong
System: The UNT Digital Library

Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Access: Use of this item is restricted to the UNT Community
This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which electrical current conducts through a secondary circuit, via a novel probe-interconnect mechanism. The second half focuses on engineering a carbon nanotube / SU-8 photoepoxy nanocomposite for fabricating MEMS devices. A processing method for this material as well as the initial results of characterization, are discussed.
Date: August 2004
Creator: Chapla, Kevin
System: The UNT Digital Library
Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics. (open access)

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and …
Date: May 2008
Creator: Chonkaew, Wunpen
System: The UNT Digital Library
Low Temperature Polymeric Precursor Derived Zinc Oxide Thin Films (open access)

Low Temperature Polymeric Precursor Derived Zinc Oxide Thin Films

Zinc oxide (ZnO) is a versatile environmentally benign II-VI direct wide band gap semiconductor with several technologically plausible applications such as transparent conducting oxide in flat panel and flexible displays. Hence, ZnO thin films have to be processed below the glass transition temperatures of polymeric substrates used in flexible displays. ZnO thin films were synthesized via aqueous polymeric precursor process by different metallic salt routes using ethylene glycol, glycerol, citric acid, and ethylene diamine tetraacetic acid (EDTA) as chelating agents. ZnO thin films, derived from ethylene glycol based polymeric precursor, exhibit flower-like morphology whereas thin films derived of other precursors illustrate crack free nanocrystalline films. ZnO thin films on sapphire substrates show an increase in preferential orientation along the (002) plane with increase in annealing temperature. The polymeric precursors have also been used in fabricating maskless patterned ZnO thin films in a single step using the commercial Maskless Mesoscale Materials Deposition system.
Date: December 2006
Creator: Choppali, Uma
System: The UNT Digital Library
Thermophysical, Interfacial and Decomposition Analyses of Polyhydroxyalkanoates introduced against Organic and Inorganic Surfaces (open access)

Thermophysical, Interfacial and Decomposition Analyses of Polyhydroxyalkanoates introduced against Organic and Inorganic Surfaces

The development of a "cradle-to-cradle" mindset with both material performance during utilization and end of life disposal is a critical need for both ecological and economic considerations. The main limitation to the use of the biopolymers is their mechanical properties. Reinforcements are therefore a good alternative but disposal concerns then arise. Thus the objective of this dissertation is to investigate a biopolymer nanocomposite where the filler is a synthetically prepared layer double hydroxide (inorganic interface); and a biopolymer paper (organic interface) based coating or laminate. The underlying issues driving performance are the packing density of the biopolymer and the interaction with the reinforcement. Since the polyhydroxyalkanoates or PHAs (the biopolymers used for the manufacture of the nanocomposites and coatings) are semicrystalline materials, the glass transition was investigated using dynamic mechanical analysis (DMA) and dielectric spectroscopy (DES), whereas the melt crystallization, cold crystallization and melting points were investigated using differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) spectroscopy was used to estimate crystallinity in the coated material given the low thermal mass of the PHA in the PHA coating. The significant enhancement of the crystallization rate in the PHA nanocomposite was probed using DSC and polarized optical microscopy (POM) and analyzed …
Date: December 2009
Creator: Dagnon, Koffi Leonard
System: The UNT Digital Library
Determination of Wear in Polymers Using Multiple Scratch Test. (open access)

Determination of Wear in Polymers Using Multiple Scratch Test.

Wear is an important phenomenon that occurs in all the polymer applications in one form or the other. However, important links between materials properties and wear remain illusive. Thus optimization of material properties requires proper understanding of polymer properties. Studies to date have typically lacked systematic approach to all polymers and wear test developed are specific to some polymer classes. In this thesis, different classes of polymers are selected and an attempt is made to use multiple scratch test to define wear and to create a universal test procedure that can be employed to most of the polymers. In each of the materials studied, the scratch penetration depth s reaches a constant value after certain number of scratches depending upon the polymer and its properties. Variations in test parameters like load and speed are also studied in detail to understand the behavior of polymers and under different conditions. Apart from polystyrene, all the other polymers studied under multiple scratch test reached asymptotes at different scratch numbers.
Date: August 2004
Creator: Damarla, Gowrisankar
System: The UNT Digital Library
Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction (open access)

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have …
Date: August 2007
Creator: Diercks, David Robert
System: The UNT Digital Library
Modified epoxy coatings on mild steel: A study of tribology and surface energy. (open access)

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Date: August 2009
Creator: Dutta, Madhuri
System: The UNT Digital Library
Definition of Brittleness: Connections Between Mechanical and Tribological Properties of Polymers. (open access)

Definition of Brittleness: Connections Between Mechanical and Tribological Properties of Polymers.

The increasing use of polymer-based materials (PBMs) across all types of industry has not been matched by sufficient improvements in understanding of polymer tribology: friction, wear, and lubrication. Further, viscoelasticity of PBMs complicates characterization of their behavior. Using data from micro-scratch testing, it was determined that viscoelastic recovery (healing) in sliding wear is independent of the indenter force within a defined range of load values. Strain hardening in sliding wear was observed for all materials-including polymers and composites with a wide variety of chemical structures-with the exception of polystyrene (PS). The healing in sliding wear was connected to free volume in polymers by using pressure-volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with again the exception of PS. The exceptional behavior of PS has been attributed qualitatively to brittleness. In pursuit of a precise description of such, a quantitative definition of brittleness has been defined in terms of the elongation at break and storage modulus-a combination of parameters derived from both static and dynamic mechanical testing. Furthermore, a relationship between sliding wear recovery and brittleness for all PBMs including PS is demonstrated. The definition of brittleness may be used as …
Date: August 2008
Creator: Hagg Lobland, Haley E.
System: The UNT Digital Library
Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy. (open access)

Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy.

Absorption of octadecanethiol and p-nitrobenzenethiol onto gold surfaces from ethanol solutions has been studied by means of contact angle, optical ellipsometry, angle-resolved XPS (ARXPS), and with grazing angle total reflection FTIR. Growth of the monolayers from dilute solutions has been monitored and Langmuir isotherm adsorption curves were fitted to experimental data. A saturated film is formed within approximately 5h after immersion in solutions of concentrations ranging from 0.0005mM to 0.01mM. We found, that the final density of monolayer depends on the concentration of the solution.
Date: August 2004
Creator: Jakubowicz, Agnieszka
System: The UNT Digital Library

Effect of Silyation on Organosilcate Glass Films

Access: Use of this item is restricted to the UNT Community
Photoresist stripping with oxygen plasma ashing destroys the functional groups in organosilicate glass films and induce moisture uptake, causing low-k dielectric degradation. In this study, hexamethyldisilazane (HMDS), triethylchlorosilane and tripropylchlorosilane are used to repair the damage to organosilicate glass by the O2 plasma ashing process. The optimization of the surface functionalization of the organosilicate glass by the silanes and the thermal stability of the functionalized surfaces are investigated. These experimental results show that HMDS is a promising technique to repair the damage to OSG during the photoresist removal processing and that the heat treatment of the functionalized surfaces causes degradation of the silanes deteriorating the hydrophobicity of the films.
Date: August 2004
Creator: Kadam, Poonam
System: The UNT Digital Library
Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties. (open access)

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with increased clay concentration. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both clays served as nucleation enhancers increasing recrystallization temperatures in the composites. Flame retarding properties were determined by using the flammability HVUL-94 system. LDH indicated better flame retarding properties than MLS for PE. The char structure was analyzed by environmental scanning electron microscopy. Mechanical properties were studied by tensile testing and Vickers microhardness testing apparatus.
Date: May 2008
Creator: Kosuri, Divya
System: The UNT Digital Library

A Wet Etch Release Method for Silicon Microelectromechanical Systems (MEMS) Using Polystyrene Microspheres for Improved Yield

Access: Use of this item is restricted to the UNT Community
One of the final steps in fabricating microelectromechanical devices often involves a liquid etch release process. Capillary forces during the liquid evaporation stage after the wet etch process can pull two surfaces together resulting in adhesion of suspended microstructures to the supporting substrate. This release related adhesion can greatly reduce yields. In this report, a wet etch release method that uses polystyrene microspheres in the final rinse liquid is investigated. The polystyrene microspheres act as physical barriers between the substrate and suspended microstructures during the final liquid evaporation phase. A plasma ashing process is utilized to completely remove the polystyrene microspheres from the microstructure surfaces. Using this process, release yields > 90% were achieved. It is found that the surface roughness of gold surfaces increases while that of the silicon is reduced due to a thin oxide that grows on the silicon surface during the plasma process.
Date: May 2004
Creator: Mantiziba, Fadziso
System: The UNT Digital Library
Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass (open access)

Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Wetting of a substance has been widely investigated since it has many applications to many different fields. Wetting principles can be applied to better select cleans for front end of line (FEOL) and back end of line (BEOL) cleaning processes. These principles can also be used to help determine processes that best repel water from a semiconductor device. It is known that the value of the dielectric constant in an insulator increases when water is absorbed. These contact angle experiments will determine which processes can eliminate water absorption. Wetting is measured by the contact angle between a solid and a liquid. It is known that roughness plays a crucial role on the wetting of a substance. Different surface groups also affect the wetting of a surface. In this work, it was investigated how wetting was affected by different solid surfaces with different chemistries and different roughness. Four different materials were used: silicon; thermally grown silicon dioxide on silicon; chemically vapor deposited (CVD) silicon dioxide on silicon made from tetraethyl orthosilicate (TEOS); and organosilicate glass (OSG) on silicon. The contact angle of each of the samples was measured using a goniometer. The roughness of the samples was measured by atomic force …
Date: December 2009
Creator: Martinez, Nelson
System: The UNT Digital Library
Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties (open access)

Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties

In recent developments of composite materials, scientists and engineers have come up with fibers as well as matrices for composites and techniques of blending high cost components with low cost materials. Thus, one creates cost effective composite materials that are as efficient as space age components. One of the major breakthroughs in this area is the innovation of molecular composites, specifically polymeric liquid crystals (PLCs). These materials have excellent mechanical properties such as tensile impact and bending strength. They have excellent chemical resistance, low thermal expansivity, and low flammability. Their low viscosity leads to good processability One major setback in using space age composite technology in commercial applications is the price. Due to the complexity of processing, the cost of space composite materials is skyrocketing. To take the same concept of space age composite materials to create a more economical substitute has become a serious concern among scientists and engineers around the world. The two issues that will be resolved in this thesis are: (1) the potential impact of using PLCs (molecular reinforcement) can have on macro reinforced (heterogeneous composite, HC) long fiber systems; and (2) how strategic placement of the reinforcing layers can affect the macromechanical properties of the …
Date: December 2000
Creator: Maswood, Syed
System: The UNT Digital Library

Supercritical Silylation and Stability of Silyl Groups

Access: Use of this item is restricted to the UNT Community
Methylsilsesquioxane (MSQ) and organosilicate glass (OSG) are the materials under this study because they exhibit the dielectric constant values necessary for future IC technology requirements. Obtaining a low-k dielectric value is critical for the IC industry in order to cope time delay and cross talking issues. These materials exhibit attractive dielectric value, but there are problems replacing conventional SiO2, because of their chemical, mechanical and electrical instability after plasma processing. Several techniques have been suggested to mitigate process damage but supercritical silylation offers a rapid single repair step solution to this problem. Different ash and etch damaged samples were employed in this study to optimize an effective method to repair the low-k dielectric material and seal the surface pores via supercritical fluid processing with various trialkylchlorosilanes. Fourier transform infrared spectroscopy (FTIR), contact angle, capacitance- voltage measurements, and x-ray photoemission spectroscopy, dynamic secondary ion mass spectroscopy (DSIMS), characterized the films. The hydrophobicity and dielectric constant after exposure to elevated temperatures and ambient conditions were monitored and shown to be stable. The samples were treated with a series of silylating agents of the form R3-Si-Cl where R is an alkyl groups (e.g. ethyl, propyl, isopropyl). Reactivity with the surface hydroxyls was inversely …
Date: May 2006
Creator: Nerusu, Pawan Kumar
System: The UNT Digital Library
Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites (open access)

Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites

Dan Beaty (1937-2002) was a prolific composer, pianist, researcher, educator, and writer. His large compositional output included chamber works, choral works, songs, orchestral pieces, electronic music, and keyboard works. Beaty was well versed in traditional Western music as well as the more avant-garde and perplexing idioms of the twentieth century. Beaty's compositions reflect the many fascinating, if not always popular, musical trends of his time. His music encompasses styles from serial to jazz, shows compositional influences from Arnold Schoenberg to Indonesian music, and demonstrates thought-provoking and highly intellectual craftsmanship. This document explores several of Beaty's songs through a discussion of the composer's life and compositional process. Songs included in this document are Three Weeks Songs, October, November, A Sappho Lyric, Love Song, That Night When Joy Began, and War Lyrics. This document was written to accompany the author's DMA Lecture-Recital at the University of North Texas. Unfortunately, Beaty's vocal music was never published and is mostly unknown. One goal of the project was to initiate interest in Beaty's songs. Through this document, Lecture-Recital, and additional performances, considerable strides have been made to bring Beaty's songs to new audiences throughout the United States. In addition, the author has received permission from …
Date: August 2009
Creator: Ogbomo, Sunny Minister
System: The UNT Digital Library
Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi. (open access)

Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolactone (PCL) foamed in supercritical CO2 using the batch process. Characterization of the foamed and unfoamed samples were done using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Micrographs of the samples from the SEM revealed that the cell size of the foams reduced and increased with increase in MB concentration and increase in the foaming temperature respectively. Mechanical tests; tensile, compression, shear and impact were performed on the foamed samples. It was noted that between the 20-25% wt. MB, there was an improvement in the mechanical properties. This suggests that at these compositions, there is a high interaction between PCL and MB at the molecular level compared to other compositions. The results indicate that green processing of polymer blends is viable.
Date: December 2007
Creator: Ogunsona, Emmanuel Olusegun
System: The UNT Digital Library
Micro and nano composites composed of a polymer matrix and a metal disperse phase. (open access)

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag …
Date: December 2007
Creator: Olea Mejia, Oscar Fernando
System: The UNT Digital Library

Functionalization and characterization of porous low-κ dielectrics.

Access: Use of this item is restricted to the UNT Community
The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica …
Date: May 2005
Creator: Orozco-Teran, Rosa Amelia
System: The UNT Digital Library
Study of lead sorption on magnetite at high temperatures. (open access)

Study of lead sorption on magnetite at high temperatures.

Lead's uptake on magnetite has been quantitatively evaluated in the present study at a temperature of 200°C and pH of 8.5 with lead concentrations ranging from 5 ppm to175 ppm by equilibrium adsorption isotherms. The pH independent sorption behavior suggested lead sorption due to pH independent permanent charge through weak electrostatic, non-specific attraction where cations are sorbed on the cation exchange sites. The permanent negative charge could be a consequence of lead substitution which is supported by increase in the lattice parameter values from the X-ray diffraction (XRD) results. Differential scanning calorimetry (DSC/TGA) results showed an increase of exothermic (magnetite to maghemite transformation) peak indicating substitution of lead ions due to which there is retardation in the phase transformation. Presence of outer sphere complexes and physical sorption is further supported by Fourier transformed infrared spectroscopy (FTIR). None of the results suggested chemisorption of lead on magnetite.
Date: December 2006
Creator: Paliwal, Vaishali
System: The UNT Digital Library