Effect of Engineered Surfaces on Valve Performance

Access: Use of this item is restricted to the UNT Community
Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time.
Date: December 2000
Creator: Pope, Larry G.
System: The UNT Digital Library
Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage (open access)

Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage

Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage.
Date: December 2000
Creator: Taylor, John Abner
System: The UNT Digital Library
Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions. (open access)

Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.

Within the nuclear industry, there have been numerous instances of radio transmissions interfering with sensitive plant equipment. Instances documented vary from minor instrument fluctuations to major plant transients including reactor trips. With the nuclear power industry moving toward digital technologies for control and reactor protection systems, concern exists regarding their potential susceptibility to contemporary wireless telecommunications technologies. This study evaluates the susceptibility of Comanche Peak's planned turbine controls upgrade to IEEE 802.11 compliant wireless radio emissions. The study includes a review of previous research, industry emissions standards, and technical overview of the various IEEE 802.11 protocols and details the testing methodology utilized to evaluate the digital control system. The results of this study concluded that the subject digital control system was unaffected by IEEE 802.11 compliant emissions even when the transmitter was in direct contact with sensitive components.
Date: December 2003
Creator: Carter, Clinton E.
System: The UNT Digital Library
Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System. (open access)

Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System.

The purpose of this research was to determine if installing a smaller air compressor could reduce the electrical usage of a large semiconductor manufacturing plant. A 200 horsepower Atlas Copco compressor was installed with the existing 500 horsepower Ingersoll-Rand compressors. Testing was conducted during the regular manufacturing process at MEMC Southwest in Sherman, Texas. Analysis of the data found that installing the new compressor could reduce electrical consumption. The study also found there are specific operational setpoints that allow the compressor to operate more efficiently.
Date: December 2003
Creator: Condron, Ewell D.
System: The UNT Digital Library
Computer Virus Spread Containment Using Feedback Control. (open access)

Computer Virus Spread Containment Using Feedback Control.

In this research, a security architecture based on the feedback control theory has been proposed. The first loop has been designed, developed and tested. The architecture proposes a feedback model with many controllers located at different stages of network. The controller at each stage gives feedback to the one at higher level and a decision about network security is taken. The first loop implemented in this thesis detects one important anomaly of virus attack, rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection is an important one to contain the spread. Based on the feedback model, this symptom is fed back and a state model using queuing theory is developed to delay the connections and slow down the rate of outgoing connections. Upon implementation of this model, whenever an infected machine tries to make connections at a speed not considered safe, the controller kicks in and sends those connections to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also because of delaying, many connections timeout and get dropped, reducing the spread. PID controller is implemented to decide the number of connections going to safe or suspected queue. Multiple …
Date: December 2004
Creator: Yelimeli Guruprasad, Arun
System: The UNT Digital Library
Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry (open access)

Effect of Amines as Corrosion Inhibitors for a Low Carbon Steel in Power Industry

Commonly used amines in power industry, including morpholine, DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), and DMA (dimethylallylamine) were evaluated for their effect on AISI 1018 steel at 250oF. Samples were exposed to an autoclave containing amine added aqueous solution at pH of 9.5 for 1, 2, 4, 6, 8, and 12 hours. Morphology studies were carried using scanning electron microscope (SEM), phase analysis was done utilizing Fourier transform infrared spectroscopy (FTIR), and weight loss was performed to assess kinetics of oxidation. Control samples showed the highest metal dissolution rate. DBU showed the best performance in metal protection and SEM indicated the presence of a free-crack layer formed by fine particles in that set. FTIR showed that DBU apparently favored the formation of magnetite. It is believed that fine particles impede intrusion of aggressive ions into the metal surface by forming a barrier layer. FTIR demonstrated that DMA formed more oxyhydroxides, whereas morpholine presented magnetite to hematite transformation as early as 2 hours. SEM revealed that control and DMA produced acicular particles characteristic of oxyhydroxides while morpholine and DBU presented more equiaxed particles.
Date: December 2004
Creator: Díaz, Jorge G.
System: The UNT Digital Library
Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks (open access)

Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the …
Date: December 2005
Creator: Tummala, Dinesh
System: The UNT Digital Library

Development of a Hybrid Molecular Ultraviolet Photodetector based on Guanosine Derivatives

Access: Use of this item is restricted to the UNT Community
Modern studies on charge transfer reaction and conductivity measurements of DNA have shown that the electrical behavior of DNA ranges from that of an insulator to that of a wide bandgap semiconductor. Based on this property of DNA, a metal-semiconductor-metal photodetector is fabricated using a self-assembled layer of deoxyguanosine derivative (DNA base) deposited between gold electrodes. The electrodes are lithographically designed on a GaN substrate separated by a distance L (50nm < L < 100nm). This work examines the electrical and optical properties of such wide-bandgap semiconductor based biomaterial systems for their potential application as photodetectors in the UV region wherein most of the biological agents emit. The objective of this study was to develop a biomolecular electronic device and design an experimental setup for electrical and optical characterization of a novel hybrid molecular optoelectronic material system. AFM results proved the usage of Ga-Polar substrate in conjugation with DG molecules to be used as a potential electronic based sensor. A two-terminal nanoscale biomolectronic diode has been fabricated showing efficient rectification ratio. A nanoscale integrated ultraviolet photodetector (of dimensions less than 100 nm) has been fabricated with a cut-off wavelength at ~ 320 nm.
Date: December 2005
Creator: Liddar, Harsheetal
System: The UNT Digital Library

Surface Plasmon Based Nanophotonic Optical Emitters

Access: Use of this item is restricted to the UNT Community
Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the …
Date: December 2005
Creator: Vemuri, Padma Rekha
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
Radio frequency propagation differences through various transmissive materials. (open access)

Radio frequency propagation differences through various transmissive materials.

The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna.
Date: December 2002
Creator: Ryan, Patrick L.
System: The UNT Digital Library
Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum. (open access)

Investigation of the feasibility of non-invasive carbon dioxide detection using spectroscopy in the visible spectrum.

Pulse oximeters are used in operating rooms and recovery rooms as a monitoring device for oxygen in the respiratory system of the patient. The advantage of pulse oximeters over other methods of oxygen monitoring is that they are easy to use and they are non-invasive, which means it is not necessary break the skin to extract blood for information to be obtained. The standard for the measurement of partial pressure of CO2 and O2 is an arterial blood gas analysis (ABG). However routine monitoring using this method on a continuous basis is impractical since it is slow, painful and invasive. Measuring carbon dioxide is critical to preventing ailments such as carbon dioxide poisoning or hypoxia. The problem is, currently there is no known effective non-invasive method for accurately measuring carbon dioxide in the body to properly assess the adequacy of ventilation. The objective of this study was to experimentally use spectroscopy in the visible spectrum and the principles of operation of a pulse oximeter to incorporate a method of non-invasive real-time carbon dioxide monitoring that is as quick and easy to use.
Date: December 2007
Creator: Marks, Damian
System: The UNT Digital Library
Hardware and Software Codesign of a JPEG2000 Watermarking Encoder (open access)

Hardware and Software Codesign of a JPEG2000 Watermarking Encoder

Analog technology has been around for a long time. The use of analog technology is necessary since we live in an analog world. However, the transmission and storage of analog technology is more complicated and in many cases less efficient than digital technology. Digital technology, on the other hand, provides fast means to be transmitted and stored. Digital technology continues to grow and it is more widely used than ever before. However, with the advent of new technology that can reproduce digital documents or images with unprecedented accuracy, it poses a risk to the intellectual rights of many artists and also on personal security. One way to protect intellectual rights of digital works is by embedding watermarks in them. The watermarks can be visible or invisible depending on the application and the final objective of the intellectual work. This thesis deals with watermarking images in the discrete wavelet transform domain. The watermarking process was done using the JPEG2000 compression standard as a platform. The hardware implementation was achieved using the ALTERA DSP Builder and SIMULINK software to program the DE2 ALTERA FPGA board. The JPEG2000 color transform and the wavelet transformation blocks were implemented using the hardware-in-the-loop (HIL) configuration.
Date: December 2008
Creator: Mendoza, Jose Antonio
System: The UNT Digital Library
Effects of Minimum Quantity Lubrication in Drilling 1018 Steel. (open access)

Effects of Minimum Quantity Lubrication in Drilling 1018 Steel.

A common goal for industrial manufacturers is to create a safer working environment and reduce production costs. One common method to achieve this goal is to drastically reduce cutting fluid use in machining. Recent advances in machining technologies have made it possible to perform machining with minimum-quantity lubrication (MQL). Drilling takes a key position in the realization of MQL machining. In this study the effects of using MQL in drilling AISI 1018 steel with HSS tools using a vegetable based lubricant were investigated. A full factorial experiment was conducted and regression models were generated for both surface finish and hole size. Lower surface roughness and higher tool life were observed in the lowest speed and feed rate combination.
Date: December 2008
Creator: Shaikh, Vasim
System: The UNT Digital Library
Shear Wall Tests and Finite Element Analysis of Cold-Formed Steel Structural Members. (open access)

Shear Wall Tests and Finite Element Analysis of Cold-Formed Steel Structural Members.

The research was focused on the three major structural elements of a typical cold-formed steel building - shear wall, floor joist, and column. Part 1 of the thesis explored wider options in the steel sheet sheathing for shear walls. An experimental research was conducted on 0.030 in and 0.033 in. (2:1 and 4:1 aspect ratios) and 0.027 in. (2:1 aspect ratio) steel sheet shear walls and the results provided nominal shear strengths for the American Iron and Steel Institute Lateral Design Standard. Part 2 of this thesis optimized the web hole profile for a new generation C-joist, and the web crippling strength was analyzed by finite element analysis. The results indicated an average 43% increase of web crippling strength for the new C-joist compared to the normal C-joist without web hole. To improve the structural efficiency of a cold-formed steel column, a new generation sigma (NGS) shaped column section was developed in Part 3 of this thesis. The geometry of NGS was optimized by the elastic and inelastic analysis using finite strip and finite element analysis. The results showed an average increment in axial compression strength for a single NGS section over a C-section was 117% for a 2 ft. …
Date: December 2008
Creator: Vora, Hitesh
System: The UNT Digital Library
Design and Validation of an Automated Multiunit Composting System. (open access)

Design and Validation of an Automated Multiunit Composting System.

This thesis covers the design of an automated multiunit composting system (AMUCS) that was constructed to meet the experimental apparatus requirements of the ASTM D5338 standard. The design of the AMUCS is discussed in full detail and validated with two experiments. The first experiment was used to validate the operation of the AMUCS with a 15 day experiment. During this experiment visual observations were made to visually observe degradation. Thermal properties and stability tests were performed to quantify the effects of degradation on the polymer samples, and the carbon metabolized from the degradation of samples was measured. The second experiment used the AMUCS to determine the effect of synthetic clay nanofiller on the aerobic biodegradability behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate).
Date: December 2009
Creator: Pickens, Mark Everett
System: The UNT Digital Library
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system. (open access)

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Date: December 2009
Creator: Le, Dong D.
System: The UNT Digital Library