Location Estimation and Geo-Correlated Information Trends (open access)

Location Estimation and Geo-Correlated Information Trends

A tremendous amount of information is being shared every day on social media sites such as Facebook, Twitter or Google+. However, only a small portion of users provide their location information, which can be helpful in targeted advertising and many other services. Current methods in location estimation using social relationships consider social friendship as a simple binary relationship. However, social closeness between users and structure of friends have strong implications on geographic distances. In the first task, we introduce new measures to evaluate the social closeness between users and structure of friends. Then we propose models that use them for location estimation. Compared with the models which take the friend relation as a binary feature, social closeness can help identify which friend of a user is more important and friend structure can help to determine significance level of locations, thus improving the accuracy of the location estimation models. A confidence iteration method is further introduced to improve estimation accuracy and overcome the problem of scarce location information. We evaluate our methods on two different datasets, Twitter and Gowalla. The results show that our model can improve the estimation accuracy by 5% - 20% compared with state-of-the-art friend-based models. In the …
Date: December 2017
Creator: Liu, Zhi
System: The UNT Digital Library
Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) Femtocells (open access)

Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) Femtocells

The demand for higher data rates for indoor and cell-edge users led to evolution of small cells. LTE femtocells, one of the small cell categories, are low-power low-cost mobile base stations, which are deployed within the coverage area of the traditional macro base station. The cross-tier and co-tier interferences occur only when the macrocell and femtocell share the same frequency channels. Open access (OSG), closed access (CSG), and hybrid access are the three existing access-control methods that decide users' connectivity to the femtocell access point (FAP). We define a network performance function, network productivity, to measure the traffic that is carried successfully. In this dissertation, we evaluate call mobility in LTE integrated network and determine optimized network productivity with variable call arrival rate in given LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells. In the second scenario, we evaluate call mobility in LTE integrated network with increasing femtocells and maximize network productivity with variable femtocells distribution per macrocell with constant call arrival rate in uniform LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given …
Date: December 2017
Creator: Sawant, Uttara
System: The UNT Digital Library
Object Recognition Using Scale-Invariant Chordiogram (open access)

Object Recognition Using Scale-Invariant Chordiogram

This thesis describes an approach for object recognition using the chordiogram shape-based descriptor. Global shape representations are highly susceptible to clutter generated due to the background or other irrelevant objects in real-world images. To overcome the problem, we aim to extract precise object shape using superpixel segmentation, perceptual grouping, and connected components. The employed shape descriptor chordiogram is based on geometric relationships of chords generated from the pairs of boundary points of an object. The chordiogram descriptor applies holistic properties of the shape and also proven suitable for object detection and digit recognition mechanisms. Additionally, it is translation invariant and robust to shape deformations. In spite of such excellent properties, chordiogram is not scale-invariant. To this end, we propose scale invariant chordiogram descriptors and intend to achieve a similar performance before and after applying scale invariance. Our experiments show that we achieve similar performance with and without scale invariance for silhouettes and real world object images. We also show experiments at different scales to confirm that we obtain scale invariance for chordiogram.
Date: May 2017
Creator: Tonge, Ashwini
System: The UNT Digital Library
Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence (open access)

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
Date: May 2017
Creator: Gopalakrishnan, Arjun
System: The UNT Digital Library
Online Construction of Android Application Test Suites (open access)

Online Construction of Android Application Test Suites

Mobile applications play an important role in the dissemination of computing and information resources. They are often used in domains such as mobile banking, e-commerce, and health monitoring. Cost-effective testing techniques in these domains are critical. This dissertation contributes novel techniques for automatic construction of mobile application test suites. In particular, this work provides solutions that focus on the prohibitively large number of possible event sequences that must be sampled in GUI-based mobile applications. This work makes three major contributions: (1) an automated GUI testing tool, Autodroid, that implements a novel online approach to automatic construction of Android application test suites (2) probabilistic and combinatorial-based algorithms that systematically sample the input space of Android applications to generate test suites with GUI/context events and (3) empirical studies to evaluate the cost-effectiveness of our techniques on real-world Android applications. Our experiments show that our techniques achieve better code coverage and event coverage compared to random test generation. We demonstrate that our techniques are useful for automatic construction of Android application test suites in the absence of source code and preexisting abstract models of an Application Under Test (AUT). The insights derived from our empirical studies provide guidance to researchers and practitioners involved …
Date: December 2017
Creator: Adamo, David T., Jr.
System: The UNT Digital Library
Extracting Useful Information from Social Media during Disaster Events (open access)

Extracting Useful Information from Social Media during Disaster Events

In recent years, social media platforms such as Twitter and Facebook have emerged as effective tools for broadcasting messages worldwide during disaster events. With millions of messages posted through these services during such events, it has become imperative to identify valuable information that can help the emergency responders to develop effective relief efforts and aid victims. Many studies implied that the role of social media during disasters is invaluable and can be incorporated into emergency decision-making process. However, due to the "big data" nature of social media, it is very labor-intensive to employ human resources to sift through social media posts and categorize/classify them as useful information. Hence, there is a growing need for machine intelligence to automate the process of extracting useful information from the social media data during disaster events. This dissertation addresses the following questions: In a social media stream of messages, what is the useful information to be extracted that can help emergency response organizations to become more situationally aware during and following a disaster? What are the features (or patterns) that can contribute to automatically identifying messages that are useful during disasters? We explored a wide variety of features in conjunction with supervised learning algorithms …
Date: May 2017
Creator: Neppalli, Venkata Kishore
System: The UNT Digital Library
Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams (open access)

Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams

Virtual teams in industry are increasingly being used to develop software, create products, and accomplish tasks. However, analyzing those collaborations under same-time/different-place conditions is well-known to be difficult. In order to overcome some of these challenges, this research was concerned with the study of collaboration-based, content-based and temporal measures and their ability to predict cohesion within global software development projects. Messages were collected from three software development projects that involved students from two different countries. The similarities and quantities of these interactions were computed and analyzed at individual and group levels. Results of interaction-based metrics showed that the collaboration variables most related to Task Cohesion were Linguistic Style Matching and Information Exchange. The study also found that Information Exchange rate and Reply rate have a significant and positive correlation to Task Cohesion, a factor used to describe participants' engagement in the global software development process. This relation was also found at the Group level. All these results suggest that metrics based on rate can be very useful for predicting cohesion in virtual groups. Similarly, content features based on communication categories were used to improve the identification of Task Cohesion levels. This model showed mixed results, since only Work similarity and …
Date: May 2017
Creator: Castro Hernandez, Alberto
System: The UNT Digital Library
Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures (open access)

Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures

In recent years, brain computer interfaces (BCIs) have gained popularity in non-medical domains such as the gaming, entertainment, personal health, and marketing industries. A growing number of companies offer various inexpensive consumer grade BCIs and some of these companies have recently introduced the concept of BCI "App stores" in order to facilitate the expansion of BCI applications and provide software development kits (SDKs) for other developers to create new applications for their devices. The BCI applications access to users' unique brainwave signals, which consequently allows them to make inferences about users' thoughts and mental processes. Since there are no specific standards that govern the development of BCI applications, its users are at the risk of privacy breaches. In this work, we perform first comprehensive analysis of BCI App stores including software development kits (SDKs), application programming interfaces (APIs), and BCI applications w.r.t privacy issues. The goal is to understand the way brainwave signals are handled by BCI applications and what threats to the privacy of users exist. Our findings show that most applications have unrestricted access to users' brainwave signals and can easily extract private information about their users without them even noticing. We discuss potential privacy threats posed by …
Date: May 2017
Creator: Bhalotiya, Anuj Arun
System: The UNT Digital Library
Automated GUI Tests Generation for Android Apps Using Q-learning (open access)

Automated GUI Tests Generation for Android Apps Using Q-learning

Mobile applications are growing in popularity and pose new problems in the area of software testing. In particular, mobile applications heavily depend upon user interactions and a dynamically changing environment of system events. In this thesis, we focus on user-driven events and use Q-learning, a reinforcement machine learning algorithm, to generate tests for Android applications under test (AUT). We implement a framework that automates the generation of GUI test cases by using our Q-learning approach and compare it to a uniform random (UR) implementation. A novel feature of our approach is that we generate user-driven event sequences through the GUI, without the source code or the model of the AUT. Hence, considerable amount of cost and time are saved by avoiding the need for model generation for generating the tests. Our results show that the systematic path exploration used by Q-learning results in higher average code coverage in comparison to the uniform random approach.
Date: May 2017
Creator: Koppula, Sreedevi
System: The UNT Digital Library
Mobile-Based Smart Auscultation (open access)

Mobile-Based Smart Auscultation

In developing countries, acute respiratory infections (ARIs) are responsible for two million deaths per year. Most victims are children who are less than 5 years old. Pneumonia kills 5000 children per day. The statistics for cardiovascular diseases (CVDs) are even more alarming. According to a 2009 report from the World Health Organization (WHO), CVDs kill 17 million people per year. In many resource-poor parts of the world such as India and China, many people are unable to access cardiologists, pulmonologists, and other specialists. Hence, low skilled health professionals are responsible for screening people for ARIs and CVDs in these areas. For example, in the rural areas of the Philippines, there is only one doctor for every 10,000 people. By contrast, the United States has one doctor for every 500 Americans. Due to advances in technology, it is now possible to use a smartphone for audio recording, signal processing, and machine learning. In my thesis, I have developed an Android application named Smart Auscultation. Auscultation is a process in which physicians listen to heart and lung sounds to diagnose disorders. Cardiologists spend years mastering this skill. The Smart Auscultation application is capable of recording and classifying heart sounds, and can be …
Date: August 2017
Creator: Chitnis, Anurag Ashok
System: The UNT Digital Library
Exploring Simscape™ Modeling for Piezoelectric Sensor Based Energy Harvester (open access)

Exploring Simscape™ Modeling for Piezoelectric Sensor Based Energy Harvester

This work presents an investigation of a piezoelectric sensor based energy harvesting system, which collects energy from the surrounding environment. Increasing costs and scarcity of fossil fuels is a great concern today for supplying power to electronic devices. Furthermore, generating electricity by ordinary methods is a complicated process. Disposal of chemical batteries and cables is polluting the nature every day. Due to these reasons, research on energy harvesting from renewable resources has become mandatory in order to achieve improved methods and strategies of generating and storing electricity. Many low power devices being used in everyday life can be powered by harvesting energy from natural energy resources. Power overhead and power energy efficiency is of prime concern in electronic circuits. In this work, an energy harvester is modeled and simulated in Simscape™ for the functional analysis and comparison of achieved outcomes with previous work. Results demonstrate that the harvester produces power in the 0 μW to 100 μW range, which is an adequate amount to provide supply to low power devices. Power efficiency calculations also demonstrate that the implemented harvester is capable of generating and storing power for low power pervasive applications.
Date: May 2017
Creator: Dhayal, Vandana
System: The UNT Digital Library
Analysis and Performance of a Cyber-Human System and Protocols for Geographically Separated Collaborators (open access)

Analysis and Performance of a Cyber-Human System and Protocols for Geographically Separated Collaborators

This dissertation provides an innovative mechanism to collaborate two geographically separated people on a physical task and a novel method to measure Complexity Index (CI) and calculate Minimal Complexity Index (MCI) of a collaboration protocol. The protocol is represented as a structure, and the information content of it is measured in bits to understand the complex nature of the protocol. Using the complexity metrics, one can analyze the performance of a collaborative system and a collaboration protocol. Security and privacy of the consumers are vital while seeking remote help; this dissertation also provides a novel authorization framework for dynamic access control of resources on an input-constrained appliance used for completing the physical task. Using the innovative Collaborative Appliance for REmote-help (CARE) and with the support of a remotely located expert, fifty-nine subjects with minimal or no prior mechanical knowledge are able to elevate a car for replacing a tire in an average time of six minutes and 53 seconds and with an average protocol complexity of 171.6 bits. Moreover, thirty subjects with minimal or no prior plumbing knowledge are able to change the cartridge of a faucet in an average time of ten minutes and with an average protocol complexity …
Date: December 2017
Creator: Jonnada, Srikanth
System: The UNT Digital Library
Determining Whether and When People Participate in the Events They Tweet About (open access)

Determining Whether and When People Participate in the Events They Tweet About

This work describes an approach to determine whether people participate in the events they tweet about. Specifically, we determine whether people are participants in events with respect to the tweet timestamp. We target all events expressed by verbs in tweets, including past, present and events that may occur in future. We define event participant as people directly involved in an event regardless of whether they are the agent, recipient or play another role. We present an annotation effort, guidelines and quality analysis with 1,096 event mentions. We discuss the label distributions and event behavior in the annotated corpus. We also explain several features used and a standard supervised machine learning approach to automatically determine if and when the author is a participant of the event in the tweet. We discuss trends in the results obtained and devise important conclusions.
Date: May 2017
Creator: Sanagavarapu, Krishna Chaitanya
System: The UNT Digital Library