Degree Discipline

Synthesis and Characterization of Two and Three Coordinate Gold (I) Conjugated and Rigid Metallodendrimers (open access)

Synthesis and Characterization of Two and Three Coordinate Gold (I) Conjugated and Rigid Metallodendrimers

This dissertation is a study of two major topics that involve synthetic strategies for new classes of phosphorescent gold(I)-based metallodendrimers. The phosphorescence of organic and inorganic luminophores originates from spin-orbit coupling owing to internal or external heavy atom effects as well as metal-centered emissions. Previous work in the Omary group entailed systematically designed small molecules, metallopolymers, and unconjugated metallodendrimers that contain d10 and d8 metals, whereas this dissertation aims in part to expand such strategies to the conjugated metallodendrimer regime. In one approach novel synthetic strategies were used to make first-generation phenyl acetylene dendrimers and phosphine derivatives thereof. The phosphine dendrimers are made by tethering one of the phosphines to an unsaturated dendrimer, as such phosphine dendrimers are better chromophores and luminophores due to their structural rigidity and extended conjugation. In another approach, 2- and 3-coordinate Au(I) dendritic complexes are synthesized from these phosphine dendrimers. This study is further extended to study metallodendritic complexes with different cores, for example triphenylene-based metallodendritic complexes with six acetylene branches. The physical properties of the metallodendrimers can be modulated upon proceeding to further dendrimer generations or by using solubilizing groups on the peripheral phosphines, thus allowing better processability for thin-film fabrication as required for …
Date: August 2012
Creator: Kaipa, Ushasree
System: The UNT Digital Library
A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices (open access)

A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

The characterization of 2,3,6,7,10,11-hexabromotriphenylene, Br6TP, is presented toward its potential use as an n-type organic semiconductor and metal-free room temperature phosphor. The crystal structure shows both anisotropic two-dimensional BrBr interactions and inter-layer ?-stacking interactions. Photophysical characteristics were evaluated using solid-state photoluminescence and diffuse reflectance spectroscopies, revealing significantly red-shifted excitations in the visible region for the yellow solid material (compared to ultraviolet absorption bands for the colorless dilute solutions). Correlation of spectral, electrochemical, and computational data suggest the presence of an n-type semiconducting behavior due to the electron-poor aromatic ring. The material shows excellent thermal stability as demonstrated by thermogravimetric analysis and infrared spectra of a thin film deposited by thermal evaporation. The potential for Br6TP and its analogues toward use in several types of photonic and electronic devices is discussed.
Date: December 2012
Creator: Halbert, Jason Paul
System: The UNT Digital Library