Degree Discipline

Month

A Wireless Traffic Surveillance System Using Video Analytics (open access)

A Wireless Traffic Surveillance System Using Video Analytics

Video surveillance systems have been commonly used in transportation systems to support traffic monitoring, speed estimation, and incident detection. However, there are several challenges in developing and deploying such systems, including high development and maintenance costs, bandwidth bottleneck for long range link, and lack of advanced analytics. In this thesis, I leverage current wireless, video camera, and analytics technologies, and present a wireless traffic monitoring system. I first present an overview of the system. Then I describe the site investigation and several test links with different hardware/software configurations to demonstrate the effectiveness of the system. The system development process was documented to provide guidelines for future development. Furthermore, I propose a novel speed-estimation analytics algorithm that takes into consideration roads with slope angles. I prove the correctness of the algorithm theoretically, and validate the effectiveness of the algorithm experimentally. The experimental results on both synthetic and real dataset show that the algorithm is more accurate than the baseline algorithm 80% of the time. On average the accuracy improvement of speed estimation is over 3.7% even for very small slope angles.
Date: May 2011
Creator: Luo, Ning
System: The UNT Digital Library
Techniques for Improving Uniformity in Direct Mapped Caches (open access)

Techniques for Improving Uniformity in Direct Mapped Caches

Directly mapped caches are an attractive option for processor designers as they combine fast lookup times with reduced complexity and area. However, directly-mapped caches are prone to higher miss-rates as there are no candidates for replacement on a cache miss, hence data residing in a cache set would have to be evicted to the next level cache. Another issue that inhibits cache performance is the non-uniformity of accesses exhibited by most applications: some sets are under-utilized while others receive the majority of accesses. This implies that increasing the size of caches may not lead to proportionally improved cache hit rates. Several solutions that address cache non-uniformity have been proposed in the literature. These techniques have been proposed over the past decade and each proposal independently claims the benefit of reduced conflict misses. However, because the published results use different benchmarks and different experimental setups, (there is no established frame of reference for comparing these results) it is not easy to compare them. In this work we report a side-by-side comparison of these techniques. Finally, we propose and Adaptive-Partitioned cache for multi-threaded applications. This design limits inter-thread thrashing while dynamically reducing traffic to heavily accessed sets.
Date: May 2011
Creator: Nwachukwu, Izuchukwu Udochi
System: The UNT Digital Library
Toward a Data-Type-Based Real Time Geospatial Data Stream Management System (open access)

Toward a Data-Type-Based Real Time Geospatial Data Stream Management System

The advent of sensory and communication technologies enables the generation and consumption of large volumes of streaming data. Many of these data streams are geo-referenced. Existing spatio-temporal databases and data stream management systems are not capable of handling real time queries on spatial extents. In this thesis, we investigated several fundamental research issues toward building a data-type-based real time geospatial data stream management system. The thesis makes contributions in the following areas: geo-stream data models, aggregation, window-based nearest neighbor operators, and query optimization strategies. The proposed geo-stream data model is based on second-order logic and multi-typed algebra. Both abstract and discrete data models are proposed and exemplified. I further propose two useful geo-stream operators, namely Region By and WNN, which abstract common aggregation and nearest neighbor queries as generalized data model constructs. Finally, I propose three query optimization algorithms based on spatial, temporal, and spatio-temporal constraints of geo-streams. I show the effectiveness of the data model through many query examples. The effectiveness and the efficiency of the algorithms are validated through extensive experiments on both synthetic and real data sets. This work established the fundamental building blocks toward a full-fledged geo-stream database management system and has potential impact in many …
Date: May 2011
Creator: Zhang, Chengyang
System: The UNT Digital Library