Degree Department

Degree Level

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth (open access)

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
Date: August 2011
Creator: Zhou, Mi
System: The UNT Digital Library
Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides (open access)

Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides

Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
Date: August 2011
Creator: Powoski, Robert A.
System: The UNT Digital Library
Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide (open access)

Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide

Kinetics and thermodynamics of bismuth (Bi) underpotential deposition (UPD) on ruthenium (Ru) and on electrochemically formed Ru oxide are studied using electrochemical quartz crystal microbalance technique. The Bi UPD and Bi bulk deposition are observed both on Ru and on electrochemically formed Ru oxide electrodes. The anodic peak potential of Bi UPD shifts slightly to positive potential as the scan rate increases. The peak current ratio (IAnode/ICathode) of Bi UPD and Bi bulk increases as the scan rate increases. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) with scan rates dependent are compared both in Bi UPD region and in Bi bulk region. Stability and oxidation time effects are also investigated. Bi UPD on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate independent, oxidation time dependent, and have higher plating efficiency on Ru. However, Bi bulk deposition on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate dependent, oxidation time independent, and have higher plating efficiency on electrochemically formed Ru oxide. Both Bi UPD adatoms and Bi bulk are unstable in 0.5M H2SO4.
Date: December 2011
Creator: Lin, Po-Fu
System: The UNT Digital Library
Kinetic Investigation of the Gas Phase Atomic Sulfur and Nitrogen Dioxide Reaction (open access)

Kinetic Investigation of the Gas Phase Atomic Sulfur and Nitrogen Dioxide Reaction

The kinetics of the reaction of atomic sulfur and nitrogen dioxide have been investigated over the temperature range 298 to 650 K and pressures from 14 - 405 mbar using the laser flash photolysis - resonance fluorescence technique. The overall bimolecular rate expression k (T) = (1.88 ± 0.49) x10-11 exp-(4.14 ± 0.10 kJ mol-1)/RT cm3 molecule-1 s-1 is derived. Ab initio calculations were performed at the CCSD(T)/CBS level of theory and a potential energy surface has been derived. RRKM theory calculations were performed on the system. It is found that an initially formed SNO2 is vibrationally excited and the rate of collisional stabilization is slower than the rate of dissociation to SO + NO products by a factor of 100 - 1000, under the experimental conditions.
Date: May 2011
Creator: Thompson, Kristopher Michael
System: The UNT Digital Library
Synthesis and Characterization of Copper Releasing Polymer Nanoparticles (open access)

Synthesis and Characterization of Copper Releasing Polymer Nanoparticles

Polymeric nanoparticles were synthesized and loaded with Cu²⁺ to explore the therapeutic potential for catically active transition metal ions and complexes other than cisplatin. Two types of nanoparticles were synthesized to show the potential for polymer based vectors. Copper loading and release were characterized via inductively coupled plasma mass spectrometry (ICP MS), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and elemental analysis. Results demonstrated that Cu could be loaded to the nano-sized carriers in an aqueous environment, and that the release was pH-dependent. The toxicity of these particles was measured in HeLa cells where significant toxicity was observed in vitro via dosing of high Cu-loaded nanoparticles. No significant toxicity was observed in cells dosed with Cu-free nanoparticles.
Date: May 2011
Creator: Harris, Alesha N.
System: The UNT Digital Library