Degree Discipline

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds. (open access)

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed …
Date: May 2007
Creator: Yu, Liwen
System: The UNT Digital Library
Quantum Perspectives on Physical and Inorganic Chemistry (open access)

Quantum Perspectives on Physical and Inorganic Chemistry

Applications of computational quantum chemistry are presented, including an analysis of the photophysics of cyclic trinuclear coinage metal pyrazolates, an investigation into a potential catalytic cycle utilizing transition metal scorpionates to activate arene C-H bonds, and a presentation of the benchmarking of a new composite model chemistry (the correlation consistent composite approach, ccCA) for the prediction of classical barrier heights. Modeling the pyrazolate photophysics indicates a significant geometric distortion upon excitation and the impact of both metal identity and substituents on the pyrazolates, pointing to ways in which these systems may be used to produce rationally-tuned phosphors. Similarly, thermodynamic and structural investigations into the catalyst system points to promising candidates for clean catalytic activation of arenes. The ccCA was found to reproduce classical reaction barriers with chemical accuracy, outperforming all DFT, ab initio, and composite methods benchmarked.
Date: December 2007
Creator: Grimes-Marchan, Thomas V.
System: The UNT Digital Library