CMOS Active Pixel Sensors for Digital Cameras: Current State-of-the-Art (open access)

CMOS Active Pixel Sensors for Digital Cameras: Current State-of-the-Art

Image sensors play a vital role in many image sensing and capture applications. Among the various types of image sensors, complementary metal oxide semiconductor (CMOS) based active pixel sensors (APS), which are characterized by reduced pixel size, give fast readouts and reduced noise. APS are used in many applications such as mobile cameras, digital cameras, Webcams, and many consumer, commercial and scientific applications. With these developments and applications, CMOS APS designs are challenging the old and mature technology of charged couple device (CCD) sensors. With the continuous improvements of APS architecture, pixel designs, along with the development of nanometer CMOS fabrications technologies, APS are optimized for optical sensing. In addition, APS offers very low-power and low-voltage operations and is suitable for monolithic integration, thus allowing manufacturers to integrate more functionality on the array and building low-cost camera-on-a-chip. In this thesis, I explore the current state-of-the-art of CMOS APS by examining various types of APS. I show design and simulation results of one of the most commonly used APS in consumer applications, i.e. photodiode based APS. We also present an approach for technology scaling of the devices in photodiode APS to present CMOS technologies. Finally, I present the most modern CMOS …
Date: May 2007
Creator: Palakodety, Atmaram
System: The UNT Digital Library
A nano-CMOS based universal voltage level converter for multi-VDD SoCs. (open access)

A nano-CMOS based universal voltage level converter for multi-VDD SoCs.

Power dissipation of integrated circuits is the most demanding issue for very large scale integration (VLSI) design engineers, especially for portable and mobile applications. Use of multiple supply voltages systems, which employs level converter between two voltage islands is one of the most effective ways to reduce power consumption. In this thesis work, a unique level converter known as universal level converter (ULC), capable of four distinct level converting operations, is proposed. The schematic and layout of ULC are built and simulated using CADENCE. The ULC is characterized by performing three analysis such as parametric, power, and load analysis which prove that the design has an average power consumption reduction of about 85-97% and capable of producing stable output at low voltages like 0.45V even under varying load conditions.
Date: May 2007
Creator: Vadlmudi, Tripurasuparna
System: The UNT Digital Library
Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator (open access)

Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Modern communication systems rely heavily upon microwave, radio, and other electromagnetic frequency bands as a means of providing wireless communication links. Although convenient, wireless communication is susceptible to electromagnetic interference. Solar activity causes both direct interference through electromagnetic radiation as well as indirect interference caused by charged particles interacting with Earth's magnetic field. The Solar Radio Burst Locator (SRBL) is a United States Air Force radio telescope designed to detect and locate solar microwave bursts as they occur on the Sun. By analyzing these events, the Air Force hopes to gain a better understanding of the root causes of solar interference and improve interference forecasts. This thesis presents methods of searching and analyzing events found in the previously unstudied SRBL data archive. A new web-based application aids in the searching and visualization of the data. Comparative analysis is performed amongst data collected by SRBL and several other instruments. This thesis also analyzes events across the time, intensity, and frequency domains. These analysis methods can be used to aid in the detection and understanding of solar events so as to provide improved forecasts of solar-induced electromagnetic interference.
Date: May 2007
Creator: Kincaid, Cheryl-Annette
System: The UNT Digital Library

Modeling and reduction of gate leakage during behavioral synthesis of nanoscale CMOS circuits.

Access: Use of this item is restricted to the UNT Community
The major sources of power dissipation in a nanometer CMOS circuit are capacitive switching, short-circuit current, static leakage and gate oxide tunneling. However, with the aggressive scaling of technology the gate oxide direct tunneling current (gate leakage) is emerging as a prominent component of power dissipation. For sub-65 nm CMOS technology where the gate oxide (SiO2) thickness is very low, the direct tunneling current is the major form of tunneling. There are two contribution parts in this thesis: analytical modeling of behavioral level components for direct tunneling current and propagation delay, and the reduction of tunneling current during behavioral synthesis. Gate oxides of multiple thicknesses are useful in reducing the gate leakage dissipation. Analytical models from first principles to calculate the tunneling current and the propagation delay of behavioral level components is presented, which are backed by BSIM4/5 models and SPICE simulations. These components are characterized for 45 nm technology and an algorithm is provided for scheduling of datapath operations such that the overall tunneling current dissipation of a datapath circuit under design is minimal. It is observed that the oxide thickness that is being considered is very low it may not remain constant during the course of fabrication. Hence …
Date: May 2006
Creator: Velagapudi, Ramakrishna
System: The UNT Digital Library
A Dual Dielectric Approach for Performance Aware Reduction of Gate Leakage in Combinational Circuits (open access)

A Dual Dielectric Approach for Performance Aware Reduction of Gate Leakage in Combinational Circuits

Design of systems in the low-end nanometer domain has introduced new dimensions in power consumption and dissipation in CMOS devices. With continued and aggressive scaling, using low thickness SiO2 for the transistor gates, gate leakage due to gate oxide direct tunneling current has emerged as the major component of leakage in the CMOS circuits. Therefore, providing a solution to the issue of gate oxide leakage has become one of the key concerns in achieving low power and high performance CMOS VLSI circuits. In this thesis, a new approach is proposed involving dual dielectric of dual thicknesses (DKDT) for the reducing both ON and OFF state gate leakage. It is claimed that the simultaneous utilization of SiON and SiO2 each with multiple thicknesses is a better approach for gate leakage reduction than the conventional usage of a single gate dielectric (SiO2), possibly with multiple thicknesses. An algorithm is developed for DKDT assignment that minimizes the overall leakage for a circuit without compromising with the performance. Extensive experiments were carried out on ISCAS'85 benchmarks using 45nm technology which showed that the proposed approach can reduce the leakage, as much as 98% (in an average 89.5%), without degrading the performance.
Date: May 2006
Creator: Mukherjee, Valmiki
System: The UNT Digital Library
A CAM-Based, High-Performance Classifier-Scheduler for a Video Network Processor. (open access)

A CAM-Based, High-Performance Classifier-Scheduler for a Video Network Processor.

Classification and scheduling are key functionalities of a network processor. Network processors are equipped with application specific integrated circuits (ASIC), so that as IP (Internet Protocol) packets arrive, they can be processed directly without using the central processing unit. A new network processor is proposed called the video network processor (VNP) for real time broadcasting of video streams for IP television (IPTV). This thesis explores the challenge in designing a combined classification and scheduling module for a VNP. I propose and design the classifier-scheduler module which will classify and schedule data for VNP. The proposed module discriminates between IP packets and video packets. The video packets are further processed for digital rights management (DRM). IP packets which carry regular traffic will traverse without any modification. Basic architecture of VNP and architecture of classifier-scheduler module based on content addressable memory (CAM) and random access memory (RAM) has been proposed. The module has been designed and simulated in Xilinx 9.1i; is built in ISE simulator with a throughput of 1.79 Mbps and a maximum working frequency of 111.89 MHz at a power dissipation of 33.6mW. The code has been translated and mapped for Spartan and Virtex family of devices.
Date: May 2008
Creator: Tarigopula, Srivamsi
System: The UNT Digital Library