High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements and/or thermomechanical processing. This dissertation is focused on fundamental understanding of high strain-rate deformation behavior of several high entropy alloy systems with widely varying microstructures. Ballistic impact testing of face centered cubic Al0.1CoCrFeNi high entropy alloy showed failure by ductile hole growth. The deformed microstructure showed extensive micro-banding and micro-twinning at low velocities while adiabatic shear bands and dynamic recrystallization were seen at higher velocities. The Al0.7CoCrFeNi and AlCoCrFeNi2.1 eutectic high entropy alloys, with BCC and FCC phases in lamellar morphology, showed failure by discing. A network of cracks coupled with small and inhomogeneous plastic deformation led to the brittle mode of failure in these eutectic alloys. Phase-specific mechanical behavior using small-scale techniques revealed higher strength and strain rate sensitivity for the B2 phase compared to the L12 phase. The interphase boundary demonstrated good stability without any …
Date: May 2021
Creator: Muskeri, Saideep
System: The UNT Digital Library

Effects of Surface Texture and Porosity on the Corrosion Behavior and Biocompatibility of Pure Zinc Biomaterials for Orthopedic Applications

In this dissertation, small and large NaCl particle-derived surfaces (Ra > 40 microns) were generated on 2D Zn materials, and the surfaces were carefully studied concerning topography, corrosion behavior, and bone cell compatibility. Increases in surface roughness accelerated the corrosion rate, and cell viability was maintained. This method was then extended to 3D porous scaffolds prepared by a hybrid AM/casting technique. The scaffolds displayed a near-net shape, an interconnected pore structure, increasing porosity paralleled to an increased corrosion rate, an ability to support cell growth, and powerful antibacterial properties. Lastly, nano/micro (Rz 0.02–1 microns) topographies were generated on 2D Zn materials, and the materials were comprehensively studied with special attention devoted to corrosion behavior, biocompatibility, osteogenic differentiation, immune cell response, hemocompatibility, and antibacterial performance. For the first time, the textured nonhemolytic surfaces on Zn were shown to direct cell fate, and the micro-textures promoted bone cell differentiation and directed immune cells away from an inflammatory phenotype.
Date: May 2021
Creator: Cockerill, Irsalan
System: The UNT Digital Library

Crystallization and Lithium Ion Diffusion Mechanism in the Lithium-Aluminum-Germanium-Phosphate Glass-Ceramic Solid Electrolytes

NASCION-type lithium-aluminum-germanium-phosphate (LAGP) glass-ceramic is one of the most promising solid electrolyte (SEs) material for the next generation Li-ion battery. Based on the crystallization of glass-ceramic material, the two-step heat treatment was designed to control the crystallization of Li-ion conducting crystal in the glass matrix. The results show that the LAGP crystal is preferred to internally crystalize, Tg + 60%∆T is the nucleation temperature that provides the highest ion conductivity. The compositional investigation also found that, pure LAGP crystal phase can be synthesized by lowering the amount of GeO2. To fill gap of atomic structure in LAGP glass-ceramic, molecular dynamic (MD) simulation was used to build the crystal, glass, and interfacial structure LAGP. The aliovalent ion substitution induced an simultaneously redistribution of Li to the 36f interstitial site, and the rapid cooperative motion between the Li-ions at 36f can drop the activation energy of LAGP crystal by decreasing the relaxation energy; furthermore, an energy model was built based on the time-based analysis of Li-ion diffusion to articulate the behavior. The glass and interfacial structure show and accumulation of AlO4, GeO4 and Li at the interface, which explains the Li-trapping on the intergranular glass phase. An in-situ synchrotron X-ray study found …
Date: May 2021
Creator: Kuo, Po Hsuen
System: The UNT Digital Library

Origin of Unusually Large Hall-Petch Strengthening Coefficients in High Entropy Alloys

High entropy alloys (HEAs), also referred to as complex concentrated alloys (CCAs), are a relatively new class of alloys that have gained significant attention since 2010 due to their unique balance of properties that include high strength, ductility and excellent corrosion resistance. HEAs are usually based on five or more elements alloyed in near equimolar concentrations, and exhibit simple microstructures by the formation of solid solution phases instead of complex compounds. HEAs have great potential in the design of new materials; for instance, for lightweight structural applications and elevated temperature applications. The relation between grain size and yield strength has been a topic of significant interest not only to researchers but also for industrial applications. Though some research papers have been published in this area, consensus among them is lacking, as the studies yielded different results. Al atom being a large atom causes significant lattice distortion. This work attempts to study the Hall-Petch relationship for Al0.3CoFeNi and Al0.3CoCrFeNi and to compare the data of friction stress σ0 and Hall-Petch coefficient K with published data. The base alloys for both these alloys are CoFeNi and CoCrFeNi respectively. It was observed by atom probe tomography (APT) that clustering of Al-Ni atoms in …
Date: May 2021
Creator: Jagetia, Abhinav
System: The UNT Digital Library

Investigation of Porous Ceramic Structure by Freeze-Casting

The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing parameters of the magnetic field-assisted freeze-casting method were optimized with a focus on comparing the structure obtained using vertical and horizontal magnetic fields and understanding the mechanisms that occur under different freezing modes. More specifically, this processing method was used to produce Al2O3 and B4C porous ceramics materials with unidirectionally-aligned pore channels. The effect of the vertical and horizontal magnetic field strength and direction, concentration of magnetic material (Fe3O4), cooling rate, and freezing time were examined. The resulting ceramics with highly aligned pore channels were infiltrated with molten metal to create metal matrix composites. The mechanical properties of these structures were measured and were subsequently correlated to their morphology and composition.
Date: May 2021
Creator: Bakkar, Said Adnan
System: The UNT Digital Library

Alloy Design, Processing and Deformation Behavior of Metastable High Entropy Alloys

This dissertation presents an assortment of research aimed at understanding the composition-dependence of deformation behavior and the response to thermomechanical processing, to enable efficient design and processing of low stacking fault energy (SFE) high entropy alloy (HEAs). The deformation behavior and SFE of four low SFE HEAs were predicted and experimentally verified using electron microscopy and in-situ neutron diffraction. A new approach of employing a minimization function to refine and improve the accuracy of a semi-empirically derived expression relating composition with SFE is demonstrated. Ultimately, by employing the minimization function, the average difference between experimental and predicted SFE was found to be 2.64 mJ m-2. Benchmarking with currently available approaches suggests that integrating minimization functions can substantially improve prediction accuracy and promote efficient HEA design with expansion of databases. Additionally, in-situ neutron diffraction was used to present the first in-situ measurement of the interspacing between stacking faults (SFs) which were correlated with work hardening behavior. Electron transparent specimens (< ~100 nm thick) were used in order to resolve nanoscale planar faults instead of the thicker sub-sized specimens (on the order of millimeters in thickness) which exhibit the classical stages III work hardening behavior characteristic of low SFE metals and alloys. …
Date: May 2021
Creator: Frank, Michael (Materials science researcher)
System: The UNT Digital Library