Estimation of Aircraft Emissions for the Corpus Christi International Airport, Corpus Christi, Texas (open access)

Estimation of Aircraft Emissions for the Corpus Christi International Airport, Corpus Christi, Texas

Commercial aviation is a vital part of the United States economy. It generates over $1 trillion annually, which is more than 5% of the U.S. GDP, and produces approximately 10 million jobs. Every year there is an increase in commercial air traffic. This is attributed to expanding trade between states and other countries, which requires larger amounts of cargo aircraft in operation, and also catering to the growing number of middle and upper class passengers who travel for business and pleasure purposes. A rise in commercial aviation leads to the use of more aviation fuel on a monthly and annual basis. This in turn leads to escalated levels of combustion by-products from jet and turbofan engines into the atmosphere. The negative effects of these by-products range from producing poor air quality and consequent health hazards to contributing to global warming. This study is aimed at assessing the impacts of aircraft emissions on the local air quality in Corpus Christi using the Emissions and Dispersion Modeling System. Flight data for the study was obtained from the Department of Transportation's Research and Innovative Technology Administration. Analyses of the emissions were compared on monthly, annual, engine type and airline provider bases. Climatic, economic …
Date: May 2013
Creator: Thomas, Gregson Johann
System: The UNT Digital Library
Using a Multimodal Sensing Approach to Characterize Human Responses to Affective and Deceptive States (open access)

Using a Multimodal Sensing Approach to Characterize Human Responses to Affective and Deceptive States

Different ways to measure human affective and deceptive reactions to stimulus have been developed. One method is a multimodal approach using web camera, thermal imaging camera and physiological sensors data to extract different features in the human face (verbal and non-verbal behavior) such as breathing rate, heart rate, face temperature, skin conductance, eye tracking, language analysis and facial expressions among others. Human subjects from different ages and ethnicity were exposed to two different experiments were they watched videos (affection recognition) and others answered an interview session (deception recognition). With the data collected from videos (thermal and visual), different regions of interest (ROI) of the face were selected as well as the whole picture. The ROI were determined based on the most sensitive parts of the face where larger changes of temperature or other physiological features are recorded. It was also analyzed the language (written and spoken) in order to obtain the verbal modalities. The data has been compared among the subjects to determine whether the deceptive and affective reactions of a person can be predicted using multimodal approach. From the multiple data obtained, a characterization of reactions is proposed when subjects are exposed to different stimulus, positive or negative, as …
Date: May 2013
Creator: Narvaez-Valle, Alexis
System: The UNT Digital Library
Optical Transparent Pmma Composite Reinforced By Coaxial Electrospun Pan Hollow Nanofibers (open access)

Optical Transparent Pmma Composite Reinforced By Coaxial Electrospun Pan Hollow Nanofibers

Electrospinning has been recognized as an efficient technique for the fabrication of polymer fibers. These electrospun fibers have many applications across a broad range of industries. In this research, optical transparent composites were successfully fabricated by embedding polyacrylonitrile (PAN) hollow nanofibers into poly (methyl methacrylate) (PMMA) matrix. The hollow PAN nanofibers were prepared by coaxial electrospinning. The PAN was used as the shell solution, and the mineral oil was used as the core solution. The resulting fibers were then etched with octane to remove the mineral oil from the core. The hollow PAN fibers were then homogeneously distributed in PMMA resins to fabricate the composite. The morphology, transmittance and mechanical properties of the PAN/PMMA composite were then characterized with an ESEM, TEM, tensile testing machine, UV-vis spectrometer and KD2 Pro Decagon device. The results indicated that the hollow nanofibers have relatively uniform size with one-dimensional texture at the walls. The embedded PAN hollow nanofibers significantly enhanced the tensile stress and the Young's modulus of the composite (increased by 58.3% and 50.4%, respectively), while having little influence on the light transmittance of the composite. The KD2 Pro device indicated that the thermal conductivity of the PMMA was marginally greater than the …
Date: May 2013
Creator: Antoine, Donley
System: The UNT Digital Library
Thermal Characterization of Austenite Stainless Steel (304) and Cnt Films of Varying Thickness Using Micropipette Thermal Sensors (open access)

Thermal Characterization of Austenite Stainless Steel (304) and Cnt Films of Varying Thickness Using Micropipette Thermal Sensors

Thermal transport behavior of austenite stainless steel stripe (304) and the carbon nano-tubes (CNTs) films of varying thickness are studied using a micropipette thermal sensor. Micropipette sensors of various tip sizes were fabricated and tested for the sensitivity and reliability. The sensitivity deviated by 0.11 for a batch of pipette coated under same physical vapor deposition (PVD) setting without being affected by a tip size. Annealing, rubber coating and the vertical landing test of the pipette sensor proved to be promising in increasing the reliability and durability of the pipette sensors. A micro stripe (80µm × 6µm × 0.6µm) of stainless steel, fabricated using focused ion beam (FIB) machining, was characterized whose thermal conductivity was determined to be 14.9 W/m-K at room temperature. Similarly, the thermal characterization of CNT films showed the decreasing tendency in the thermal transport behavior with the increase in the film thickness.
Date: May 2013
Creator: Dangol, Ashesh
System: The UNT Digital Library