Degree Discipline

States

114 Matching Results

Results open in a new window/tab.

Electrolysis of Aluminum Solutions in a Magnetic Field (open access)

Electrolysis of Aluminum Solutions in a Magnetic Field

This investigation is an attempt to verify the original work done by George Antonoff and Anne Rowley, and to contribute specific data on the action of a magnetic field on aluminum cells. Experiments of the type they have described have been performed and an extensive set of data has been collected. It was thought that if the results of Antonoff and Rowley could be duplicated, further investigation would be warranted. However, the experiments have produced negative results. These results are described in detail in these chapters.
Date: May 1950
Creator: Wood, Charles E.
System: The UNT Digital Library
Nuclear Magnetic Resonance in Hydrated Crystals - Potassium Oxalate Monohydrate (open access)

Nuclear Magnetic Resonance in Hydrated Crystals - Potassium Oxalate Monohydrate

The problem of this study was the measurement of the proton-proton separation in the water molecule of hydration in a single crystal of potassium oxalate monohydrate.
Date: May 1962
Creator: Mason, Charley Mack
System: The UNT Digital Library
Proton Nuclear Magnetic Resonance in Mica (open access)

Proton Nuclear Magnetic Resonance in Mica

The experiments to be described here were undertaken for the purpose of determining, if possible, by NMR techniques whether or not the hydroxyl protons in mica are bound in a regular crystalline array, and, if so, whether or not the hydroxyl protons occur in reasonably isolated pairs as in waters of hydration.
Date: May 1962
Creator: Townsend, Don H.
System: The UNT Digital Library
Electron Transport in Bismuth at Liquid Helium Tempratures (open access)

Electron Transport in Bismuth at Liquid Helium Tempratures

To obtain information on the band structure of bismuth, galvanomagnetic potentials were measured in a single crystal at liquid-helium and liquid-nitrogen temperatures. These measurements were analyzed for information on the different carriers, particularly for the existence of a high-mobility band of holes.
Date: May 1964
Creator: Newell, James M.
System: The UNT Digital Library
The Dielectric Constant of Galvinoxyl (open access)

The Dielectric Constant of Galvinoxyl

The molecules in many substances are know to undergo at characteristic temperatures a change in their rotational freedom in the solid state, signifying either a change in structure of the material of the onset of limited rotation of the molecule about some symmetry axis. The purpose of this research was to determine from dielectric constant measurements over the 100°K-420°K temperature range whether or not the organic free radical galvinoxyl and its diamagnetic parent molecule, dihydroxydiphenylmethane, undergo any such transitions.
Date: May 1968
Creator: Mizell, Michael E.
System: The UNT Digital Library
Cross-Section at 15.6 and 16.1 MeV (open access)

Cross-Section at 15.6 and 16.1 MeV

The intent of this investigation is the determination of the values of the Cs-133 (n,2n)Cs-132 cross-section at neutron energies of 15.6 and 16.1 MeV. Neutrons of this energy are produced with comparative ease by means of the D-T reaction, in which deuterons of energy 500 and 750 keV, respectively, are impingent upon a tritium target.
Date: May 1969
Creator: Pepper, George H.
System: The UNT Digital Library
Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces (open access)

Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces

Many solids have Fermi surfaces which are approximated as ellipsoids. A comprehensive solution for the magnetoconductivity of an ellipsoid is obtained which proves the existence of a relaxation time tensor which can be anisotropic and which is a function of energy only.
Date: May 1971
Creator: Fuchser, Troy Denrich
System: The UNT Digital Library
Cross Section Measurements in Praseodymium-141 as a Function of Neutron Bombarding Energy (open access)

Cross Section Measurements in Praseodymium-141 as a Function of Neutron Bombarding Energy

Using the parallel disk method of activation analysis, the (n,2n) reaction cross section in 141-Pr was measured as a function of neutron energy in the range 15.4 to 18.4 MeV. The bombarding neutrons were produced from the 3-T(d,n)4-He reaction, where the deuterons were accelerated by the 3-MV Van de Graff generator of the North Texas Regional Physics Laboratory in Denton, Texas.
Date: May 1971
Creator: Marsh, Stephen Addison
System: The UNT Digital Library
Phase Shift Determination for Elastic Potential Scattering, Using the IBM 360-50 Computer (open access)

Phase Shift Determination for Elastic Potential Scattering, Using the IBM 360-50 Computer

The primary objective of this paper is to present a computerized method for the extraction of phase shifts from an angular distribution. This was accomplished using a least squares curve fitting routine.
Date: May 1971
Creator: Psencik, James A.
System: The UNT Digital Library
A Study of Solar Cosmic Ray Flare Effects (open access)

A Study of Solar Cosmic Ray Flare Effects

The purpose of this study is to determine the characteristics of the solar cosmic ray flux. This report describes the design and construction of a cosmic ray detector system used in this study and describes the analysis of the data obtained from these systems.
Date: May 1971
Creator: Keath, Edwin P. (Edwin Paul), 1938-
System: The UNT Digital Library
Virial Theorem for a Molecule (open access)

Virial Theorem for a Molecule

The usual virial theorem, relating kinetic and potential energy, is extended to a molecule by the use of the true wave function. The virial theorem is also obtained for a molecule from a trial wave function which is scaled separately for electronic and nuclear coordinates.
Date: May 1972
Creator: Ranade, Manjula A.
System: The UNT Digital Library
Electrical Conductivity in Thin Films (open access)

Electrical Conductivity in Thin Films

This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Date: May 1973
Creator: Meyer, Frederick Otto
System: The UNT Digital Library
Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe (open access)

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Date: May 1973
Creator: Freeman, Ronald Harold
System: The UNT Digital Library
A Calculation of the Excitation Spectrum of Superfluid Helium-4 (open access)

A Calculation of the Excitation Spectrum of Superfluid Helium-4

The Hartree-Fock-Bogoliubov theory of homogeneous boson systems at finite temperatures is rederived using, a free energy variational principle. It is shown that a t-matrix naturally emerges in the theory. Phenomenological modifications are made (1) to remove the energy gap at zero momentum, and (2) to eliminate the Hartree-Fock-like terms, which dress the kinetic energy of the particle. A numerical calculation of the energy spectrum is made over a temperature range of 0.00 to 3.14 K using the Morse dipole-dipole-2 potential and the Frost-Musulin potential. The energy spectrum of the elementary excitations is calculated self-consistently. It has a phonon behavior at low momentum and a roton behavior at higher momentum, so it is in qualitative agreement with the observed energy spectrum of liquid He II. However, the temperature dependence of the spectrum is incorrectly given. At the observed density of 0.0219 atoms A-3, the depletion of the zero-momentum state at zero temperature is 40.5% for the Morse dipole-dipole-2potential, and 43.2% for the Frost- Musulin potential. The depletion increases gradually until at 3.14 K the zero momentum density becomes zero discontinuously, which indicates a transition to the ideal Bose gas.
Date: May 1974
Creator: Goble, Gerald W.
System: The UNT Digital Library
K-Shell Ionization Cross Sections of Selected Elements from Ag to La for Proton Bombardment from 0.6 to 2.0 MeV (open access)

K-Shell Ionization Cross Sections of Selected Elements from Ag to La for Proton Bombardment from 0.6 to 2.0 MeV

The K-shell x-ray and ionization cross sections are measured for protons on Ag, Cd, Sn, Sb, Te, Ba, and La over the ion energy range of 0.6 to 2.0 MeV. The data are compared to the predictions of the PWBA, the PWBA with corrections for binding energy and/or Coulomb deflection, the BEA, and the constrained BEA predictions. In general, the non-relativistic PWBA with binding energy correction gives the best overall agreement with the measurements of proton-induced x-ray processes for the K-shell of the elements studied in this work. The data further suggest the need for relativistic PWBA treatment of the interactions in the K-shell for the range of binding energies represented by the elements investigated in this work.
Date: May 1974
Creator: Khelil, Najat Arafat
System: The UNT Digital Library
Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a Probe (open access)

Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a Probe

The frequency shifts and Q changes of a resonant microwave cavity were utilized as a basis for determining microwave properties of solids and liquids. The method employed consisted of varying the depth of penetration of a cylindrical sample of the material into a cavity operating in the TM0 1 0 Mode. The liquid samples were contained in a thin-walled quartz tube. The perturbation of the cavity was achieved by advancing the sample into the cavity along the symmetry axis by employing a micrometer drive appropriately calibrated for depth of penetration of the sample. A differentiation method was used to obtain the half-power points of the cavity resonance profile at each depth of penetration. The perturbation techniques for resonant cavities were used to reduce the experimental data obtained to physical parameters for the samples. The probing frequency employed was near 9 gHz.
Date: May 1974
Creator: Hong, Ki H.
System: The UNT Digital Library
Density Profile of a Quantized Vortex Line in Superfluid Helium-4 (open access)

Density Profile of a Quantized Vortex Line in Superfluid Helium-4

The density amplitude of an isolated quantum vortex line in superfluid 4He is calculated using a generalized Gross-Pitaevskii (G-P) equation. The generalized G-P equation for the order parameter extends the usual mean-field approach by replacing the interatomic potential in the ordinary G-P equation by a local, static T matrix, which takes correlations between the particles into account. The T matrix is a sum of ladder diagrams appearing in a diagrammatic expansion of the mean field term in an exact equation for the order parameter. It is an effective interaction which is much softer than the realistic interatomic Morse dipole-dipole potential from which it is calculated. A numerical solution of the generalized G-P equation is required since it is a nonlinear integro-differential equation with infinite limits. For the energy denominator in the T matrix equation, a free-particle spectrum and the observed phonon-roton spectrum are each used. For the fraction of particles in the zero-momentum state (Bose-Einstein dondensate) which enters the equation, both a theoretical value of 0.1 and an experimental value of 0.024 are used. The chemical potential is adjusted so that the density as a function of distance from the vortex core approaches the bulk density asymptotically. Solutions of the …
Date: May 1975
Creator: Harper, John Howard
System: The UNT Digital Library
Effects of Discharge Tube Geometry on Plasma Ion Oscillations (open access)

Effects of Discharge Tube Geometry on Plasma Ion Oscillations

This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.
Date: May 1975
Creator: Simmons, David Warren
System: The UNT Digital Library
A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals (open access)

A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals

An expression for the dielectric susceptibility tensor of a cubic ionic crystal has been derived using the classical Liouville operator. The effect of cubic anharmonic forces is included as a perturbation on the harmonic crystal solution, and a series expansion for the dielectric susceptibility is developed. The most important terms in the series are identified and summed, yielding an expression for the complex susceptibility with an anharmonic contribution which is linearly dependent on temperature. A numerical example shows that both the real and imaginary parts of the susceptibility are continuous, finite functions of frequency.
Date: May 1976
Creator: Kennedy, Howard V.
System: The UNT Digital Library
Theoretical Cross Section for Light Scattering from Superfluid Helium-4 (open access)

Theoretical Cross Section for Light Scattering from Superfluid Helium-4

The finite lifetime of the bound roton pair is included in the theoretical light scattering cross section to explain the shape of the peak in the observed Raman light scattering cross section in He II. A model Hamiltonian is used to describe interactions between quasiparticles for the helium system. The equation of motion for the bound roton pair state, which is taken to be a collective mode of quasiparticle pairs, is solved. The cross section for light scattering is then derived using Fermi's Golden Rule with the bound roton pair as the final state. Since the bound roton pair can decay into two free phonons, a phenomenological width r is included in the cross section. The peak position and shape of the observed cross section are both fitted using a binding energy of εB = 0.37 K for the bound roton pair.
Date: May 1976
Creator: Latham, W. Peters, Jr., 1948-2016.
System: The UNT Digital Library
Measurement of the Rate Coefficients for the Bimolecular and Termolecular Charge Transfer Reactions of He₂⁺ with Ne, Ar, N₂, CO, CO₂, and CH₄ (open access)

Measurement of the Rate Coefficients for the Bimolecular and Termolecular Charge Transfer Reactions of He₂⁺ with Ne, Ar, N₂, CO, CO₂, and CH₄

The problem with which this investigation is concerned is that of measuring the rate coefficients for termolecular charge transfer reactions of He2+ in atmospheric pressure afterglows with the minority reacting species. Of particular interest was the discovery that the presence of a third body can change an improbable charge transfer reaction involving He+2 into a very probable one, as in the case of the reaction with argon. For example, in Tables II and II it was shown that less than a 300 torr pressure of helium was required to double the effective rate of reaction of argon with He2+ while over 3000 torr was required for CH4. The sensitivity of the method has been sufficient to detect termolecular components as small as 2 x 10-30 cm /sec and values were found to range widely from 2 x 10 for Ne to 67 x 10-30 cm6/sec for CO2. The size of these termolecular rates not only served to explain specific anomalous efficiencies of the charge transfer process observed in atmospheric pressure lasers but also suggested the general importance of three-body ion-molecule reactions in higher pressure plasmas.
Date: May 1977
Creator: Lee, Francis Wha-Pyo
System: The UNT Digital Library
A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets (open access)

A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets

Thin target L-Shell x-ray production cross sections for protons incident on ₆₂Sm and ₇₀Yb in the energy range of 0.3 to 2.4 MeV/amu, alpha particles incident on ₆₂Sm, ₇₀Yb, and ₈₂Pb in the energy range of 0.15 to 4.8 MeV/amu, and lithium ions incident on ₅₈Ce, ₆₀Nd, ₆₂Sm, ₆₆Dy, ₆₇Ho, ₇₀Yb, and ₈₂Pb in the energy range of 0.8 to 4.4 MeV/amu have been measured. The cross section data have been compared to the planewave Born approximation (PWBA) and the PWBA modified to include binding energy and Coulomb deflection effects. The Lα₁,₂ x-ray production cross sections are best represented by the PWBA modified to include both the binding energy and Coulomb deflection effects (PWBA-BC) over the entire incident ion, incident energy, and target ranges studied. However, the Lγ₁ and Lγ₂,₃,₍₆₎ x-ray production cross sections are best represented by the PWBA except at the lower ion energies, where both the PWBA and PWBA-BC are in disagreement with the data. The comparison of Lα₁,₂/Lγ₂,₃,₍₆₎ ratios to theory reveals that the PWBA-BC does not predict the inflection point substantiated by the data, and the agreement between the data and the PWBA-BC becomes worse as the atomic number of the incident ion increases. Comparison …
Date: May 1978
Creator: Light, Glenn Michael
System: The UNT Digital Library
Microwave Properties of Hyaluronate Solutions Using a Resonant Microwave Cavity as a Probe (open access)

Microwave Properties of Hyaluronate Solutions Using a Resonant Microwave Cavity as a Probe

Physiological functions of a biomacromolecule seem to be closely related to its molecular conformations. The knowledge of any conformational changes due to changes in its environment may lead to a proper understanding of its functions. Hyaluronic acid, a biomacromolecule with unusually high molecular weight and some important biological functions is the subject of the present work. A temperature-dependent transition in hyaluronate solution of 120 mg/ml concentration was observed at physiological temperature. It is shown that this temperature-dependent behavior can be related to the orientational polarizability term in the Debye theory of polar molecules in liquids.
Date: May 1980
Creator: Jani, Shirish K.
System: The UNT Digital Library
Low-Velocity K-Shell Ionization Cross Sections for Protons, Deuterons and Alpha Particles Bombarding Thin Metal Targets (open access)

Low-Velocity K-Shell Ionization Cross Sections for Protons, Deuterons and Alpha Particles Bombarding Thin Metal Targets

The purpose of this work was to examine the effect of the use the assumption κω2K/ΕCM «1 in calculating K-shell ionization cross sections in the plane wave Born approximation (PWBA) where κω2K is the observed binding energy of the K-shell and ECM is the energy of the incident particle in the center of mass system. Avoiding this assumption produces a threshold for ionization at Ecm = κω2K. Calculations employing the assumption, which leads to the use of approximate limits of integration, do not go to zero for even the .Lowest values of the incident energy.
Date: May 1981
Creator: Rice, Roger Karl
System: The UNT Digital Library