Degree Discipline

Degree Level

Synthesis and Complexation Studies of Novel Functionalized Crown Ethers and Azacrown Ethers

Access: Use of this item is restricted to the UNT Community
Novel cage-functionalized azacrown ethers, i.e. 51, 52, 53, 55, 57, 61 and 62, which have various crown cavity and different number of nitrogen atoms incorporated, have been prepared. X-ray structures of 53, 55 and 57 have been obtained for the study of the crown topological structure. The complexation properties of crown 51, 52, 57, 61 and 62 have been evaluated via alkali metal picrate extraction, silver picrate extraction and ESI-MS study. The novel cage-fuctionalized azacrown ethers generally exhibit high avidity and selectivity towards Ag+ versus alkali metal ions and some transition metals i.e. Cu2+, Mn2+, Zn2+, Ni2+ and Pb2+. Crown 61 displays significant avidity and selectivity toward K+ in alkali metal picrate extraction experiments vis-à-vis the remaining alkali metal picrates. Three types of ditopic ion-exchange receptors for sodium hydroxide extraction study have been designed. All of the crown ether molecules have proper cavity for selective sodium complexation and have weakly acidic ionizable alcohols for sodium-proton exchange under strongly basic conditions. Crown 80 and 81 were synthesized; key intermediates for the synthesis of crown 82, 83 and 84 have been prepared. The preparation of 99 afforded an unexpected crown 103. The preparation of 109 had been attempted, but could not be …
Date: May 2006
Creator: Huang, Zilin
System: The UNT Digital Library
Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications (open access)

Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications

A novel route for the synthesis of the polycyclic aromatic hydrocarbon peropyrene (Pp) is reported along with the efforts to synthesize derivatives of Pp, 2,2′- and 5,5′-linked tetracene dimers as candidates for study as singlet fission materials in photovoltaic devices. Peropyrene was synthesized by the McMurry coupling conditions from phenalenone and low-valent titanium species. The crystal structure of Pp is formed by π-stacked molecular pairs in a herringbone arrangement. The direct functionalization of Pp was studied, and several indirect methods for the functionalization of Pp via phenalenone derivatives are reported. Nucleophilicly dependent, regioselective Michael addition pathways for phenalenone are described. Phenalenone forms a nucleophilic complex with bispinacolatodiboron and yields chiral 3,3′-linked phenalenone dimers and a bicyclo[3.2.1]octane derivative product of an unusual 3,4 addition. An active complex product of phenalenone and (dimethylphenylsilyl)boronic acid pinacolic ester forms Pp directly. The synthesis of 2,2′- and 5,5′-linked tetracene dimers led to the study of the reduction of 1-arylprop-2-yn-1-ol derivatives via TFA-catalyzed hydride transfer from triethylsilane. Substrates with terminal and TMS-protected alkynes showed silane exchange upon reduction. A TMS-protected, terminal alkyne became triethylsilyl-protected by about 50% whereas only triethylsilyl-protected, terminal alkyne was observed from the reduction of an unprotected, terminal alkyne. A new conformational polymorph …
Date: May 2015
Creator: Rodríguez López, Marco Tulio
System: The UNT Digital Library
Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis (open access)

Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis

The ability of gold(I) to activate many types of unsaturated bonds toward nucleophilic attack was not widely recognized until the early 2000s. One major challenge in gold catalysis is the control over regioselectivity when there are two or more possible products as a result of complicated mechanistic pathways. It is well know that the choice of ligand can have dramatic effects on which pathway is being followed but very rarely are the reasons for this selectivity understood. The synthesis of new acyclic diaminocarbenes was developed and a study of the ligand effects on the regioselectivity of a gold-catalyzed domino enyne cyclization hydroarylation reaction and a Nazarov cyclization was undertaken. New chiral acyclic diaminocarbenes were also developed and tested along side new C3-symmetric phosphite ligands in an asymmetric intramolecular hydroamination of allenes. Structure activity correlations were developed for the potential use in further rational ligand design. The synthesis of 6a,7-dihydro-5-amino-dibenzo[c,g]chromene derivatives via a gold-catalyzed domino reaction of alkynylbenzaldehydes in the presence of secondary amines was developed. These were sent to be screened for biological activity.
Date: May 2016
Creator: Ruch, Aaron A.
System: The UNT Digital Library