Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis (open access)

Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis

The ability of gold(I) to activate many types of unsaturated bonds toward nucleophilic attack was not widely recognized until the early 2000s. One major challenge in gold catalysis is the control over regioselectivity when there are two or more possible products as a result of complicated mechanistic pathways. It is well know that the choice of ligand can have dramatic effects on which pathway is being followed but very rarely are the reasons for this selectivity understood. The synthesis of new acyclic diaminocarbenes was developed and a study of the ligand effects on the regioselectivity of a gold-catalyzed domino enyne cyclization hydroarylation reaction and a Nazarov cyclization was undertaken. New chiral acyclic diaminocarbenes were also developed and tested along side new C3-symmetric phosphite ligands in an asymmetric intramolecular hydroamination of allenes. Structure activity correlations were developed for the potential use in further rational ligand design. The synthesis of 6a,7-dihydro-5-amino-dibenzo[c,g]chromene derivatives via a gold-catalyzed domino reaction of alkynylbenzaldehydes in the presence of secondary amines was developed. These were sent to be screened for biological activity.
Date: May 2016
Creator: Ruch, Aaron A.
System: The UNT Digital Library
Explorations with optically active, cage-annulated crown ethers. (open access)

Explorations with optically active, cage-annulated crown ethers.

A variety of optically active macrocyclic crown ethers that serve as "host" systems that are capable of differentiating between enantiomeric "guest" molecules during host-guest complexation have been prepared via incorporation of chiral elements into the crown ring skeleton. The ability of these crown ethers to recognize the enantiomers of guest salts, i.e., (+) a-methyl benzylamine and to transport them enantioselectively in W-tube transport experiments were studied. The ability of these crown ethers to perform as chiral catalysts in an enantioselective Michael addition was studied. The extent of asymmetric induction, expressed in terms of the enantiomeric excess (%ee), was monitored by measuring the optical rotation of the product and comparing to the literature value.
Date: May 2003
Creator: Ji, Mingzhe
System: The UNT Digital Library

Synthesis and Complexation Studies of Novel Functionalized Crown Ethers and Azacrown Ethers

Access: Use of this item is restricted to the UNT Community
Novel cage-functionalized azacrown ethers, i.e. 51, 52, 53, 55, 57, 61 and 62, which have various crown cavity and different number of nitrogen atoms incorporated, have been prepared. X-ray structures of 53, 55 and 57 have been obtained for the study of the crown topological structure. The complexation properties of crown 51, 52, 57, 61 and 62 have been evaluated via alkali metal picrate extraction, silver picrate extraction and ESI-MS study. The novel cage-fuctionalized azacrown ethers generally exhibit high avidity and selectivity towards Ag+ versus alkali metal ions and some transition metals i.e. Cu2+, Mn2+, Zn2+, Ni2+ and Pb2+. Crown 61 displays significant avidity and selectivity toward K+ in alkali metal picrate extraction experiments vis-à-vis the remaining alkali metal picrates. Three types of ditopic ion-exchange receptors for sodium hydroxide extraction study have been designed. All of the crown ether molecules have proper cavity for selective sodium complexation and have weakly acidic ionizable alcohols for sodium-proton exchange under strongly basic conditions. Crown 80 and 81 were synthesized; key intermediates for the synthesis of crown 82, 83 and 84 have been prepared. The preparation of 99 afforded an unexpected crown 103. The preparation of 109 had been attempted, but could not be …
Date: May 2006
Creator: Huang, Zilin
System: The UNT Digital Library

Synthesis and Properties of Novel Cage-Annulated Crown Ethers

Access: Use of this item is restricted to the UNT Community
Three cage-functionalized polyoxacrown ethers (9, 10 and 12) and four novel cage-functionalized polyoxamonoazacrown ethers (18, 20, 25 and 29) that contain 3,5-disubstituted-4-oxahexacyclo[5.4.0.02,6.03,10.05,9.08,11]dodecane ("oxahexacyclic") moiety have been synthesized and their respective alkali metal picrate extraction profiles along with that of three analogues 13, 14 and 21 have been obtained. The observed avidities and selectivities of the host molecules toward complexation and transport of alkali metal picrates can be related to the size and shape of their respective macrocyclic cavity and the number of donor atoms. The effect of N-alkyl substitution on the complexation properties of azacrown ethers has been studied. The avidity of N-Et azacrown ethers toward complexation with alkali metal cations is generally higher than that of the corresponding non-N-alkylated hosts. However, the presence of an N-Et group appears to have a negligible effect upon their relative selectivities in their regards. The effect of pH on extraction process was studied; it was thereby determined that the alkali metal picrate extraction experiments are best performed at high pH (ca. 11-12).
Date: May 2003
Creator: Huang, Zilin
System: The UNT Digital Library
Synthesis and Characterization of 2,3-Dichloropyrrolo[1,2-a]benzimidazol-1-one and Its Methylthiol Derivatives (open access)

Synthesis and Characterization of 2,3-Dichloropyrrolo[1,2-a]benzimidazol-1-one and Its Methylthiol Derivatives

Condensation of 2,3-dichloromaleic anhydride and o-phenylenediamine in refluxing toluene affords the three compounds 2,3-dichloro-N-o-C6H4(NH2)maleimide (1), N,N¢-o-C6H4-bis(2,3-dichloromaleimide) (2), and 2,3-dichloropyrrolo[1,2-a]benzimidazol-1-one (3), with compound 1 as the major product. Repeating the same reaction in the presence of added PTSA furnishes compound 3 as the major product. Treatment of 3 with methylthiol in the presence of pyridine affords monosulfide compounds 2-chloro-3-methylthiopyrrolo[1,2-a]benzimidazol-1-one (4) and and the disulfide derivatives 2,3-di(methylthio)pyrrolo[1,2-a]benzimidazol-1-one (5). The substitution of the first chlorine group in compound 3 occurs regioselectively at C-3 to produce compound 4, followed by replacement of the remaining chlorine group to furnish the disulfide compounds 5. The new compounds 1-5 have been isolated by column chromatography and characterized by IR, NMR, XRD, CV and etc.
Date: May 2006
Creator: Wu, Guanmin
System: The UNT Digital Library
ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds. (open access)

ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

An extensive study of disubstituted cycloalkanes like CnH2n where n=3,4,5 and 6 using DFT((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations is presented focusing on the effect of pyramidalization of the radical center. A potential energy surface (PES) analysis shows that the radical prefers to pyramidalize anti to the two cis fluorines in the disubstituted cycloalkanes. The degree of pyramidalization for 1,2-difluorocyclopropyl radical is 43.9o away from the cis fluorines whereas for 1,3-difluorocyclobutyl radical, 1,3-difluorocyclopentyl radical and 1,3-difluorocyclohexyl radical is 3.8o, 5.4o and 14.5o respectively away from the cis fluorines. The importance of this pyramidality effect in these compounds is discussed in context with the carbon-hydrogen bond dissociation energies (BDE's) because the preference of the radical centers to pyramidalize anti to the fluorines affects the bond dissociation energy. Importance of steric effect and unfavorable electronic interactions have been extensively explored in planar permethylated cyclobutadiene (Me4CBD) and cyclooctatetraene (Me8COT) using ((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations. It is thought that steric interactions dominate electronic interactions in Me8COT, while this works opposite in case of Me4CBT. Instead, in Me4CBD the number of unfavorable electronic interactions between π bonds and out-of-plane hydrogens plays the dominant role in determining the relative energies. Interactions between the π bonds of CBD and …
Date: May 2008
Creator: Tanna, Jigisha
System: The UNT Digital Library
Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications (open access)

Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications

A novel route for the synthesis of the polycyclic aromatic hydrocarbon peropyrene (Pp) is reported along with the efforts to synthesize derivatives of Pp, 2,2′- and 5,5′-linked tetracene dimers as candidates for study as singlet fission materials in photovoltaic devices. Peropyrene was synthesized by the McMurry coupling conditions from phenalenone and low-valent titanium species. The crystal structure of Pp is formed by π-stacked molecular pairs in a herringbone arrangement. The direct functionalization of Pp was studied, and several indirect methods for the functionalization of Pp via phenalenone derivatives are reported. Nucleophilicly dependent, regioselective Michael addition pathways for phenalenone are described. Phenalenone forms a nucleophilic complex with bispinacolatodiboron and yields chiral 3,3′-linked phenalenone dimers and a bicyclo[3.2.1]octane derivative product of an unusual 3,4 addition. An active complex product of phenalenone and (dimethylphenylsilyl)boronic acid pinacolic ester forms Pp directly. The synthesis of 2,2′- and 5,5′-linked tetracene dimers led to the study of the reduction of 1-arylprop-2-yn-1-ol derivatives via TFA-catalyzed hydride transfer from triethylsilane. Substrates with terminal and TMS-protected alkynes showed silane exchange upon reduction. A TMS-protected, terminal alkyne became triethylsilyl-protected by about 50% whereas only triethylsilyl-protected, terminal alkyne was observed from the reduction of an unprotected, terminal alkyne. A new conformational polymorph …
Date: May 2015
Creator: Rodríguez López, Marco Tulio
System: The UNT Digital Library