L-asparaginase II Production by Escherichia coli (open access)

L-asparaginase II Production by Escherichia coli

Growth of Escherichia coli A-l under aerobic conditions in an enriched medium with a total amount of 0.2 per cent glucose was biphasic and asparaginase II activity was detected after depletion of ammonia from the growth medium in the second phase of growth. Glucose was exhausted two hours before ammonia and three hours before asparaginase II activity was detected. The concentration of 3',5'-cyclic adenosine monophosphate was found to fluctuate when the dissolved oxygen in the medium reached a low level, when glucose and ammonia were exhausted, and when the cells entered the second stationary phase of growth. Culture tube studies of the growth of E_j_ coli A-l in three per cent nutrient broth with varied concentrations of ammonium chloride and potassium nitrate gave lower specific activity of asparaginase II when this was compared to that seen in three per cent nutrient broth alone. The addition of glucose to the same medium before asparaginase II activity was detected resulted in the production of acid by E. coli A-l with cessation of growth; however, addition after L-asparaginase synthesis had started did not affect the specific activity of the enzyme. The addition of ammonium chloride suppressed L-asparaginase synthesis, but addition after enzyme synthesis …
Date: May 1985
Creator: Johnson, Terrance L. (Terrance Lewyne), 1950-
System: The UNT Digital Library
Comparative Biochemistry and Evolution of Aspartate Transcarbamoylase from Diverse Bacteria (open access)

Comparative Biochemistry and Evolution of Aspartate Transcarbamoylase from Diverse Bacteria

Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in pyrimidine biosynthesis. Bacterial ATCases are divided into three classes, A, B and C. Class A ATCases are largest at 450-500, are. dodecamers and represented by Pseudomonas ATCase. The overlapping pyrBC' genes encode the Pseudomonases ATCase, which is active only as a 480 kDa dodecamer and requires an inactive pyrC'-encoded DHOase for ATCase activity. ATCase has been studied in two non-pathogenic members of Mycobacterium, M. smegmatis and M. phlei. Their ATCases are dodecamers of molecular weight 480 kDa, composed of six PyrB and six PyrC polypeptides. Unlike the Pseudomonas ATCase, the PyrC polypeptide in these mycobacteria encodes an active DHOase. Moreover, the ATCase: DHOase complex in M. smegmatis is active both as the native 480 kDa and as a 390 kDa complex. The latter lacks two PyrC polypeptides yet retains ATCase activity. The ATCase from M. phlei is similar, except that it is active as the native 480 kDa form but also as 450,410 and 380 kDa forms. These complexes lack one, two, and three PyrC polypeptides, respectively. By contrast,.ATCases from pathogenic mycobacteria are active only at 480 kDa. Mycobacterial ATCases contain active DHOases and accordingly. are placed in class A1 . …
Date: May 1999
Creator: Hooshdaran, Massoumeh Ziba
System: The UNT Digital Library
A Study of the Water-Soluble Antigens from Virulent and Attenuated Biotypes of Brucella abortus (open access)

A Study of the Water-Soluble Antigens from Virulent and Attenuated Biotypes of Brucella abortus

Through chemical analysis and ion exchange chromatography of watersoluble antigens, this investigation supports the view that the majority of differences between the biotypes are quantitative. It was also found that strains demonstrate distinct, qualitative differences when compared to the attenuated strain 19 by immunodiffusion and thin-layer polyacrylamide gel, isoelectric focusing. These differences include the presence of antigens on virulent strains that are absent on strain 19. In addition, one antigen absent on strain 19, was found common to each virulent biotype. Finally, the results from immunodiffusion experiments, employing adsorbed and non-adsorbed immune globulins, indicate that at least some water-soluble antigens are exposed on the cell surface and that their distribution among the biotypes varies.
Date: May 1977
Creator: Brodeur, Richard D.
System: The UNT Digital Library
Characterization of the Pigment-Protein and Pigment-ester of Xanthomonas Campestris Pv. Juglandis (open access)

Characterization of the Pigment-Protein and Pigment-ester of Xanthomonas Campestris Pv. Juglandis

The objectives of this project were to develop a high performance liquid chromatographic method for separating the pigment esters mixture, to determine the locations of the pigment moiety in the isolated esters using pholosiphases, and to characterize the pigment-protein complex and determine its distribution in other bacteria. Saponification of the two pigment esters 1 and 2 with aqueous KOH yielded two free pigments on TLC plates developed by two solvent systems. The fasters moving of these two free pigments co-chromatographed with the one free pigment produced from each pigment ester by phospholipase A2 treatment. This suggests that the pigment molecule is a methoxy derivative of xanthomonadin and is esterified to the 2-position of the glycerol moiety of each pigment ester. No free pigment was released from phospholipases C and D treatment of the two pigment esters, indicating that pigment is not esterified to the sorbitol or phosphate moiety of pigment esters 1 or 2.
Date: May 1987
Creator: Lawani, Leonard Olu
System: The UNT Digital Library
Characterization of the Pigment-Protein Complex in Corynebacterium Poinsettiae (open access)

Characterization of the Pigment-Protein Complex in Corynebacterium Poinsettiae

The purpose of this study was to completely characterize the protein moiety in the caroteno complex in C. poinsettae, determine if the distribution and level of protein in the pigment-protein complex in membranes of the wild type and in a colorless mutant could account for the differences in the stability of the membrane, and to determine if this protein is common to other pigmented and non-pigmented organisms. Also, electron microscopy of cell membranes of C. poinsettiae which had been exposed to gold-labelled antibody against the protein moitey of the pigment-protein complex, demonstrating that the protein is randomly distributed in the membranes of both wild type and colorless mutant.
Date: May 1986
Creator: Ebadati, Nasrollah D.
System: The UNT Digital Library