Models to Combat Email Spam Botnets and Unwanted Phone Calls (open access)

Models to Combat Email Spam Botnets and Unwanted Phone Calls

With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based …
Date: May 2008
Creator: Husna, Husain
System: The UNT Digital Library
Variability-aware low-power techniques for nanoscale mixed-signal circuits. (open access)

Variability-aware low-power techniques for nanoscale mixed-signal circuits.

New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has …
Date: May 2009
Creator: Ghai, Dhruva V.
System: The UNT Digital Library
Exploring Privacy in Location-based Services Using Cryptographic Protocols (open access)

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed …
Date: May 2011
Creator: Vishwanathan, Roopa
System: The UNT Digital Library
Physical-Layer Network Coding for MIMO Systems (open access)

Physical-Layer Network Coding for MIMO Systems

The future wireless communication systems are required to meet the growing demands of reliability, bandwidth capacity, and mobility. However, as corruptions such as fading effects, thermal noise, are present in the channel, the occurrence of errors is unavoidable. Motivated by this, the work in this dissertation attempts to improve the system performance by way of exploiting schemes which statistically reduce the error rate, and in turn boost the system throughput. The network can be studied using a simplified model, the two-way relay channel, where two parties exchange messages via the assistance of a relay in between. In such scenarios, this dissertation performs theoretical analysis of the system, and derives closed-form and upper bound expressions of the error probability. These theoretical measurements are potentially helpful references for the practical system design. Additionally, several novel transmission methods including block relaying, permutation modulations for the physical-layer network coding, are proposed and discussed. Numerical simulation results are presented to support the validity of the conclusions.
Date: May 2011
Creator: Xu, Ning
System: The UNT Digital Library
Incremental Learning with Large Datasets (open access)

Incremental Learning with Large Datasets

This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from …
Date: May 2012
Creator: Giritharan, Balathasan
System: The UNT Digital Library
Metamodeling-based Fast Optimization of  Nanoscale Ams-socs (open access)

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their …
Date: May 2012
Creator: Garitselov, Oleg
System: The UNT Digital Library
Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures (open access)

Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Hand and arm gestures are a great way of communication when you don't want to be heard, quieter and often more reliable than whispering into a radio mike. In recent years hand gesture identification became a major active area of research due its use in various applications. The objective of my work is to develop an integrated sensor system, which will enable tactical squads and SWAT teams to communicate when there is absence of a Line of Sight or in the presence of any obstacles. The gesture set involved in this work is the standardized hand signals for close range engagement operations used by military and SWAT teams. The gesture sets involved in this work are broadly divided into finger movements and arm movements. The core components of the integrated sensor system are: Surface EMG sensors, Flex sensors and accelerometers. Surface EMG is the electrical activity produced by muscle contractions and measured by sensors directly attached to the skin. Bend Sensors use a piezo resistive material to detect the bend. The sensor output is determined by both the angle between the ends of the sensor as well as the flex radius. Accelerometers sense the dynamic acceleration and inclination in 3 …
Date: May 2013
Creator: Akumalla, Sarath Chandra
System: The UNT Digital Library
Extrapolating Subjectivity Research to Other Languages (open access)

Extrapolating Subjectivity Research to Other Languages

Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the …
Date: May 2013
Creator: Banea, Carmen
System: The UNT Digital Library
Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings (open access)

Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the …
Date: May 2013
Creator: Sinha, Ravi Som
System: The UNT Digital Library
Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams (open access)

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP …
Date: May 2013
Creator: Zheng, Geng
System: The UNT Digital Library
Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits (open access)

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. …
Date: May 2014
Creator: Okobiah, Oghenekarho
System: The UNT Digital Library
Monitoring Dengue Outbreaks Using Online Data (open access)

Monitoring Dengue Outbreaks Using Online Data

Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Date: May 2014
Creator: Chartree, Jedsada
System: The UNT Digital Library
The Procedural Generation of Interesting Sokoban Levels (open access)

The Procedural Generation of Interesting Sokoban Levels

As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play.
Date: May 2015
Creator: Taylor, Joshua
System: The UNT Digital Library
Space and Spectrum Engineered High Frequency Components and Circuits (open access)

Space and Spectrum Engineered High Frequency Components and Circuits

With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers …
Date: May 2015
Creator: Arigong, Bayaner
System: The UNT Digital Library
Trajectory Analytics (open access)

Trajectory Analytics

The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the …
Date: May 2015
Creator: Santiteerakul, Wasana
System: The UNT Digital Library
Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits (open access)

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, …
Date: May 2016
Creator: Joshi, Shital
System: The UNT Digital Library
Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams (open access)

Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams

Virtual teams in industry are increasingly being used to develop software, create products, and accomplish tasks. However, analyzing those collaborations under same-time/different-place conditions is well-known to be difficult. In order to overcome some of these challenges, this research was concerned with the study of collaboration-based, content-based and temporal measures and their ability to predict cohesion within global software development projects. Messages were collected from three software development projects that involved students from two different countries. The similarities and quantities of these interactions were computed and analyzed at individual and group levels. Results of interaction-based metrics showed that the collaboration variables most related to Task Cohesion were Linguistic Style Matching and Information Exchange. The study also found that Information Exchange rate and Reply rate have a significant and positive correlation to Task Cohesion, a factor used to describe participants' engagement in the global software development process. This relation was also found at the Group level. All these results suggest that metrics based on rate can be very useful for predicting cohesion in virtual groups. Similarly, content features based on communication categories were used to improve the identification of Task Cohesion levels. This model showed mixed results, since only Work similarity and …
Date: May 2017
Creator: Castro Hernandez, Alberto
System: The UNT Digital Library
Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence (open access)

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
Date: May 2017
Creator: Gopalakrishnan, Arjun
System: The UNT Digital Library
Accurate Joint Detection from Depth Videos towards Pose Analysis (open access)

Accurate Joint Detection from Depth Videos towards Pose Analysis

Joint detection is vital for characterizing human pose and serves as a foundation for a wide range of computer vision applications such as physical training, health care, entertainment. This dissertation proposed two methods to detect joints in the human body for pose analysis. The first method detects joints by combining body model and automatic feature points detection together. The human body model maps the detected extreme points to the corresponding body parts of the model and detects the position of implicit joints. The dominant joints are detected after implicit joints and extreme points are located by a shortest path based methods. The main contribution of this work is a hybrid framework to detect joints on the human body to achieve robustness to different body shapes or proportions, pose variations and occlusions. Another contribution of this work is the idea of using geodesic features of the human body to build a model for guiding the human pose detection and estimation. The second proposed method detects joints by segmenting human body into parts first and then detect joints by making the detection algorithm focusing on each limb. The advantage of applying body part segmentation first is that the body segmentation method narrows …
Date: May 2018
Creator: Kong, Longbo
System: The UNT Digital Library
Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions (open access)

Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions

Human body is a complex system organized at different levels such as cells, tissues and organs, which contributes to 11 important organ systems. The functional efficiency of this complex system is evaluated as health. Traditional healthcare is unable to accommodate everyone's need due to the ever-increasing population and medical costs. With advancements in technology and medical research, traditional healthcare applications are shaping into smart healthcare solutions. Smart healthcare helps in continuously monitoring our body parameters, which helps in keeping people health-aware. It provides the ability for remote assistance, which helps in utilizing the available resources to maximum potential. The backbone of smart healthcare solutions is Internet of Things (IoT) which increases the computing capacity of the real-world components by using cloud-based solutions. The basic elements of these IoT based smart healthcare solutions are called "things." Things are simple sensors or actuators, which have the capacity to wirelessly connect with each other and to the internet. The research for this dissertation aims in developing architectures for these things, focusing on IoT-based smart healthcare solutions. The core for this dissertation is to contribute to the research in smart healthcare by identifying applications which can be monitored remotely. For this, application-specific thing architectures …
Date: May 2018
Creator: Sundaravadivel, Prabha
System: The UNT Digital Library
Computational Approaches for Analyzing Social Support in Online Health Communities (open access)

Computational Approaches for Analyzing Social Support in Online Health Communities

Online health communities (OHCs) have become a medium for patients to share their personal experiences and interact with peers on topics related to a disease, medication, side effects, and therapeutic processes. Many studies show that using OHCs regularly decreases mortality and improves patients mental health. As a result of their benefits, OHCs are a popular place for patients to refer to, especially patients with a severe disease, and to receive emotional and informational support. The main reasons for developing OHCs are to present valid and high-quality information and to understand the mechanism of social support in changing patients' mental health. Given the purpose of OHC moderators for developing OHCs applications and the purpose of patients for using OHCs, there is no facility, feature, or sub-application in OHCs to satisfy patient and moderator goals. OHCs are only equipped with a primary search engine that is a keyword-based search tool. In other words, if a patient wants to obtain information about a side-effect, he/she needs to browse many threads in the hope that he/she can find several related comments. In the same way, OHC moderators cannot browse all information which is exchanged among patients to validate their accuracy. Thus, it is critical …
Date: May 2018
Creator: Khan Pour, Hamed
System: The UNT Digital Library
Hybrid Approaches in Test Suite Prioritization (open access)

Hybrid Approaches in Test Suite Prioritization

The rapid advancement of web and mobile application technologies has recently posed numerous challenges to the Software Engineering community, including how to cost-effectively test applications that have complex event spaces. Many software testing techniques attempt to cost-effectively improve the quality of such software. This dissertation primarily focuses on that of hybrid test suite prioritization. The techniques utilize two or more criteria to perform test suite prioritization as it is often insufficient to use only a single criterion. The dissertation consists of the following contributions: (1) a weighted test suite prioritization technique that employs the distance between criteria as a weighting factor, (2) a coarse-to-fine grained test suite prioritization technique that uses a multilevel approach to increase the granularity of the criteria at each subsequent iteration, (3) the Caret-HM tool for Android user session-based testing that allows testers to record, replay, and create heat maps from user interactions with Android applications via a web browser, and (4) Android user session-based test suite prioritization techniques that utilize heuristics developed from user sessions created by Caret-HM. Each of the chapters empirically evaluate the respective techniques. The proposed techniques generally show improved or equally good performance when compared to the baselines, depending on an …
Date: May 2018
Creator: Nurmuradov, Dmitriy
System: The UNT Digital Library
Validation and Evaluation of Emergency Response Plans through Agent-Based Modeling and Simulation (open access)

Validation and Evaluation of Emergency Response Plans through Agent-Based Modeling and Simulation

Biological emergency response planning plays a critical role in protecting the public from possible devastating results of sudden disease outbreaks. These plans describe the distribution of medical countermeasures across a region using limited resources within a restricted time window. Thus, the ability to determine that such a plan will be feasible, i.e. successfully provide service to affected populations within the time limit, is crucial. Many of the current efforts to validate plans are in the form of live drills and training, but those may not test plan activation at the appropriate scale or with sufficient numbers of participants. Thus, this necessitates the use of computational resources to aid emergency managers and planners in developing and evaluating plans before they must be used. Current emergency response plan generation software packages such as RE-PLAN or RealOpt, provide rate-based validation analyses. However, these types of analysis may neglect details of real-world traffic dynamics. Therefore, this dissertation presents Validating Emergency Response Plan Execution Through Simulation (VERPETS), a novel, computational system for the agent-based simulation of biological emergency response plan activation. This system converts raw road network, population distribution, and emergency response plan data into a format suitable for simulation, and then performs these simulations …
Date: May 2018
Creator: Helsing, Joseph
System: The UNT Digital Library
A Data-Driven Computational Framework to Assess the Risk of Epidemics at Global Mass Gatherings (open access)

A Data-Driven Computational Framework to Assess the Risk of Epidemics at Global Mass Gatherings

This dissertation presents a data-driven computational epidemic framework to simulate disease epidemics at global mass gatherings. The annual Muslim pilgrimage to Makkah, Saudi Arabia is used to demonstrate the simulation and analysis of various disease transmission scenarios throughout the different stages of the event from the arrival to the departure of international participants. The proposed agent-based epidemic model efficiently captures the demographic, spatial, and temporal heterogeneity at each stage of the global event of Hajj. Experimental results indicate the substantial impact of the demographic and mobility patterns of the heterogeneous population of pilgrims on the progression of the disease spread in the different stages of Hajj. In addition, these simulations suggest that the differences in the spatial and temporal settings in each stage can significantly affect the dynamic of the disease. Finally, the epidemic simulations conducted at the different stages in this dissertation illustrate the impact of the differences between the duration of each stage in the event and the length of the infectious and latent periods. This research contributes to a better understanding of epidemic modeling in the context of global mass gatherings to predict the risk of disease pandemics caused by associated international travel. The computational modeling and …
Date: May 2019
Creator: Alshammari, Sultanah
System: The UNT Digital Library