Degree Discipline

Month

Characterization of Novel Solvents and Absorbents for Chemical Separations (open access)

Characterization of Novel Solvents and Absorbents for Chemical Separations

Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models …
Date: May 2011
Creator: Grubbs, Laura Michelle Sprunger
System: The UNT Digital Library
The Development of an Analytical Microwave Electromagnetic Pulse Transmission Probe and Preliminary Test Results (open access)

The Development of an Analytical Microwave Electromagnetic Pulse Transmission Probe and Preliminary Test Results

Within this educational endeavor instrumental development was explored through the investigation of microwave induce stable electromagnetic waves within a non-linear yttrium iron garnet ferromagnetic waveguide. The resulting magnetostatic surface waves were investigated as a possible method of rapid analytical evaluation of material composition. Initial analytical results indicate that the interaction seen between wave and material electric and magnetic fields will allow phase coherence recovery andanalysis leading to enhancement of analytical value. The ferromagnetic waveguide selected for this research was a high quality monocrystalline YIG (yttrium iron garnet) film. Magnetostatic spin waves (MSW) were produced within the YIG thin waveguide. Spin waves with desired character were used to analytically scan materials within the liquid and solid phase.
Date: May 2011
Creator: Griffith, William Francis
System: The UNT Digital Library