Degree Department

States

Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces (open access)

Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces

Many solids have Fermi surfaces which are approximated as ellipsoids. A comprehensive solution for the magnetoconductivity of an ellipsoid is obtained which proves the existence of a relaxation time tensor which can be anisotropic and which is a function of energy only.
Date: May 1971
Creator: Fuchser, Troy Denrich
System: The UNT Digital Library
Cross Section Measurements in Praseodymium-141 as a Function of Neutron Bombarding Energy (open access)

Cross Section Measurements in Praseodymium-141 as a Function of Neutron Bombarding Energy

Using the parallel disk method of activation analysis, the (n,2n) reaction cross section in 141-Pr was measured as a function of neutron energy in the range 15.4 to 18.4 MeV. The bombarding neutrons were produced from the 3-T(d,n)4-He reaction, where the deuterons were accelerated by the 3-MV Van de Graff generator of the North Texas Regional Physics Laboratory in Denton, Texas.
Date: May 1971
Creator: Marsh, Stephen Addison
System: The UNT Digital Library
Phase Shift Determination for Elastic Potential Scattering, Using the IBM 360-50 Computer (open access)

Phase Shift Determination for Elastic Potential Scattering, Using the IBM 360-50 Computer

The primary objective of this paper is to present a computerized method for the extraction of phase shifts from an angular distribution. This was accomplished using a least squares curve fitting routine.
Date: May 1971
Creator: Psencik, James A.
System: The UNT Digital Library
Electrical Conductivity in Thin Films (open access)

Electrical Conductivity in Thin Films

This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Date: May 1973
Creator: Meyer, Frederick Otto
System: The UNT Digital Library
Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe (open access)

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Date: May 1973
Creator: Freeman, Ronald Harold
System: The UNT Digital Library
Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a Probe (open access)

Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a Probe

The frequency shifts and Q changes of a resonant microwave cavity were utilized as a basis for determining microwave properties of solids and liquids. The method employed consisted of varying the depth of penetration of a cylindrical sample of the material into a cavity operating in the TM0 1 0 Mode. The liquid samples were contained in a thin-walled quartz tube. The perturbation of the cavity was achieved by advancing the sample into the cavity along the symmetry axis by employing a micrometer drive appropriately calibrated for depth of penetration of the sample. A differentiation method was used to obtain the half-power points of the cavity resonance profile at each depth of penetration. The perturbation techniques for resonant cavities were used to reduce the experimental data obtained to physical parameters for the samples. The probing frequency employed was near 9 gHz.
Date: May 1974
Creator: Hong, Ki H.
System: The UNT Digital Library
Effects of Discharge Tube Geometry on Plasma Ion Oscillations (open access)

Effects of Discharge Tube Geometry on Plasma Ion Oscillations

This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.
Date: May 1975
Creator: Simmons, David Warren
System: The UNT Digital Library
A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals (open access)

A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals

An expression for the dielectric susceptibility tensor of a cubic ionic crystal has been derived using the classical Liouville operator. The effect of cubic anharmonic forces is included as a perturbation on the harmonic crystal solution, and a series expansion for the dielectric susceptibility is developed. The most important terms in the series are identified and summed, yielding an expression for the complex susceptibility with an anharmonic contribution which is linearly dependent on temperature. A numerical example shows that both the real and imaginary parts of the susceptibility are continuous, finite functions of frequency.
Date: May 1976
Creator: Kennedy, Howard V.
System: The UNT Digital Library
Theoretical Cross Section for Light Scattering from Superfluid Helium-4 (open access)

Theoretical Cross Section for Light Scattering from Superfluid Helium-4

The finite lifetime of the bound roton pair is included in the theoretical light scattering cross section to explain the shape of the peak in the observed Raman light scattering cross section in He II. A model Hamiltonian is used to describe interactions between quasiparticles for the helium system. The equation of motion for the bound roton pair state, which is taken to be a collective mode of quasiparticle pairs, is solved. The cross section for light scattering is then derived using Fermi's Golden Rule with the bound roton pair as the final state. Since the bound roton pair can decay into two free phonons, a phenomenological width r is included in the cross section. The peak position and shape of the observed cross section are both fitted using a binding energy of εB = 0.37 K for the bound roton pair.
Date: May 1976
Creator: Latham, W. Peters, Jr., 1948-2016.
System: The UNT Digital Library
Line Width Parameters and Center Frequency Shifts in the Rotational Spectrum of Methyl Cyanide (open access)

Line Width Parameters and Center Frequency Shifts in the Rotational Spectrum of Methyl Cyanide

Measurement of the line width parameters of a molecule is of interest because collision diameters can be calculated from them. This gives an effective size of the molecule when it is involved in interactions with other molecules. Further, specific types of interactions can be inferred from detailed information about the dependence of the line width upon pressure. In this paper, an experiment for measuring line width parameters for methyl cyanide is described and the results of the experiment are analyzed. This investigation was successful in obtaining precise values for the line width parameter for the J-J' = 0-1, J-J'= 1-2, and J-J' = 2-3 transitions of methyl cyanide which agree with experimental values of other researchers where available. It was found that standing waves were the dominant effect in the measurement of center frequency shift.
Date: May 1978
Creator: Swindle, David L.
System: The UNT Digital Library
A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets (open access)

A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets

Thin target L-Shell x-ray production cross sections for protons incident on ₆₂Sm and ₇₀Yb in the energy range of 0.3 to 2.4 MeV/amu, alpha particles incident on ₆₂Sm, ₇₀Yb, and ₈₂Pb in the energy range of 0.15 to 4.8 MeV/amu, and lithium ions incident on ₅₈Ce, ₆₀Nd, ₆₂Sm, ₆₆Dy, ₆₇Ho, ₇₀Yb, and ₈₂Pb in the energy range of 0.8 to 4.4 MeV/amu have been measured. The cross section data have been compared to the planewave Born approximation (PWBA) and the PWBA modified to include binding energy and Coulomb deflection effects. The Lα₁,₂ x-ray production cross sections are best represented by the PWBA modified to include both the binding energy and Coulomb deflection effects (PWBA-BC) over the entire incident ion, incident energy, and target ranges studied. However, the Lγ₁ and Lγ₂,₃,₍₆₎ x-ray production cross sections are best represented by the PWBA except at the lower ion energies, where both the PWBA and PWBA-BC are in disagreement with the data. The comparison of Lα₁,₂/Lγ₂,₃,₍₆₎ ratios to theory reveals that the PWBA-BC does not predict the inflection point substantiated by the data, and the agreement between the data and the PWBA-BC becomes worse as the atomic number of the incident ion increases. Comparison …
Date: May 1978
Creator: Light, Glenn Michael
System: The UNT Digital Library