Degree Department

Month

A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields (open access)

A Study of Quantum Electron Dynamics in Periodic Superlattices under Electric Fields

This thesis examines the quantum dynamics of electrons in periodic semiconductor superlattices in the presence of electric fields, especially uniform static fields. Chapter 1 is an introduction to this vast and active field of research, with an analysis and suggested solutions to the fundamental theoretical difficulties. Chapter 2 is a detailed historical review of relevant theories, and Chapter 3 is a historical review of experiments. Chapter 4 is devoted to the time-independent quantum mechanical study of the electric-field-induced changes in the transmission properties of ballistic electrons, using the transfer matrix method. In Chapter 5, a new time-dependent quantum mechanical model free from the fundamental theoretical difficulties is introduced, with its validity tested at various limiting cases. A simplified method for calculating field-free bands of various potential models is designed. In Chapter 6, the general features of "Shifting Periodicity", a distinctive feature of this new model, is discussed, and a "Bloch-Floquet Theorem" is rigorously proven. Numerical evidences for the existence of Wannier-Stark-Ladders are presented, and the conditions for its experimental observability is also discussed. In Chapter 7, an analytical solution is found for Bloch Oscillations and Wannier-Stark-Ladders at low electric fields. In Chapter 8, a new quantum mechanical interpretation for Bloch …
Date: May 1996
Creator: Yuan, Daiqing
System: The UNT Digital Library
Synthesis and Physical Properties of Environmentally Responsive Polymer Gels (open access)

Synthesis and Physical Properties of Environmentally Responsive Polymer Gels

Polymer gels undergo the volume phase transition in response to an infinitesimal environmental change. This remarkable phenomenon results in many potential applications of polymer gels. This dissertation systematically investigates the chemical and physical properties of polymer gels. It is found that infrared radiation laser not only induces a volume phase transition in N-isopropylacrylamide (NIPA) gel, but also causes the gel to bend toward the laser beam. The transmission of visible laser light through a NIPA gel can also be controlled by adjusting the infrared laser power. A new class of environmentally responsive materials based on spatial modulation of the chemical nature of gels has been proposed and demonstrated. Three simple applications based on the modulated gels are presented: a bi-gel strip, a shape memory gel, and a gel hand. The bending of bi-gels has been studied as a function of temperature, acetone aqueous solution, and salt solution. As the polymer network concentration increases, the behavior of shear modulus of acrylamide (PAAM) gels deviates significantlyfromthe classical theory. The ionic NIPA gels undergo two sequential volume phase transitions: one occurs in dilute NaCl solution, the other occurs in concentrated NaCl solution. An interpenetrating polymer network (IPN) of PAAM--NIPA has also been synthesized …
Date: May 1996
Creator: Zhang, Xiaomin
System: The UNT Digital Library