Degree Department

Month

A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals (open access)

A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals

An expression for the dielectric susceptibility tensor of a cubic ionic crystal has been derived using the classical Liouville operator. The effect of cubic anharmonic forces is included as a perturbation on the harmonic crystal solution, and a series expansion for the dielectric susceptibility is developed. The most important terms in the series are identified and summed, yielding an expression for the complex susceptibility with an anharmonic contribution which is linearly dependent on temperature. A numerical example shows that both the real and imaginary parts of the susceptibility are continuous, finite functions of frequency.
Date: May 1976
Creator: Kennedy, Howard V.
System: The UNT Digital Library
Theoretical Cross Section for Light Scattering from Superfluid Helium-4 (open access)

Theoretical Cross Section for Light Scattering from Superfluid Helium-4

The finite lifetime of the bound roton pair is included in the theoretical light scattering cross section to explain the shape of the peak in the observed Raman light scattering cross section in He II. A model Hamiltonian is used to describe interactions between quasiparticles for the helium system. The equation of motion for the bound roton pair state, which is taken to be a collective mode of quasiparticle pairs, is solved. The cross section for light scattering is then derived using Fermi's Golden Rule with the bound roton pair as the final state. Since the bound roton pair can decay into two free phonons, a phenomenological width r is included in the cross section. The peak position and shape of the observed cross section are both fitted using a binding energy of εB = 0.37 K for the bound roton pair.
Date: May 1976
Creator: Latham, W. Peters, Jr., 1948-2016.
System: The UNT Digital Library