Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications (open access)

Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications

Environmental monitoring represents a major application domain for wireless sensor networks (WSN). However, despite significant advances in recent years, there are still many challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In this dissertation, we introduce the design and implementation of low-power wireless sensor networks for long-term, autonomous, and near-real-time environmental monitoring applications. We have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to provide reliable data collection with extremely low power consumption. Two wireless sensor networks based on the proposed solution have been deployed in remote field stations to monitor soil moisture along with other environmental parameters. As parts of the ever-growing environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas Environmental Observatory system for long-term operation. Environmental measurement and network performance results are presented to demonstrate the capability, reliability and energy-efficiency of the network.
Date: May 2010
Creator: Yang, Jue
System: The UNT Digital Library
Exploring Privacy in Location-based Services Using Cryptographic Protocols (open access)

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed …
Date: May 2011
Creator: Vishwanathan, Roopa
System: The UNT Digital Library
Physical-Layer Network Coding for MIMO Systems (open access)

Physical-Layer Network Coding for MIMO Systems

The future wireless communication systems are required to meet the growing demands of reliability, bandwidth capacity, and mobility. However, as corruptions such as fading effects, thermal noise, are present in the channel, the occurrence of errors is unavoidable. Motivated by this, the work in this dissertation attempts to improve the system performance by way of exploiting schemes which statistically reduce the error rate, and in turn boost the system throughput. The network can be studied using a simplified model, the two-way relay channel, where two parties exchange messages via the assistance of a relay in between. In such scenarios, this dissertation performs theoretical analysis of the system, and derives closed-form and upper bound expressions of the error probability. These theoretical measurements are potentially helpful references for the practical system design. Additionally, several novel transmission methods including block relaying, permutation modulations for the physical-layer network coding, are proposed and discussed. Numerical simulation results are presented to support the validity of the conclusions.
Date: May 2011
Creator: Xu, Ning
System: The UNT Digital Library
Techniques for Improving Uniformity in Direct Mapped Caches (open access)

Techniques for Improving Uniformity in Direct Mapped Caches

Directly mapped caches are an attractive option for processor designers as they combine fast lookup times with reduced complexity and area. However, directly-mapped caches are prone to higher miss-rates as there are no candidates for replacement on a cache miss, hence data residing in a cache set would have to be evicted to the next level cache. Another issue that inhibits cache performance is the non-uniformity of accesses exhibited by most applications: some sets are under-utilized while others receive the majority of accesses. This implies that increasing the size of caches may not lead to proportionally improved cache hit rates. Several solutions that address cache non-uniformity have been proposed in the literature. These techniques have been proposed over the past decade and each proposal independently claims the benefit of reduced conflict misses. However, because the published results use different benchmarks and different experimental setups, (there is no established frame of reference for comparing these results) it is not easy to compare them. In this work we report a side-by-side comparison of these techniques. Finally, we propose and Adaptive-Partitioned cache for multi-threaded applications. This design limits inter-thread thrashing while dynamically reducing traffic to heavily accessed sets.
Date: May 2011
Creator: Nwachukwu, Izuchukwu Udochi
System: The UNT Digital Library
Toward a Data-Type-Based Real Time Geospatial Data Stream Management System (open access)

Toward a Data-Type-Based Real Time Geospatial Data Stream Management System

The advent of sensory and communication technologies enables the generation and consumption of large volumes of streaming data. Many of these data streams are geo-referenced. Existing spatio-temporal databases and data stream management systems are not capable of handling real time queries on spatial extents. In this thesis, we investigated several fundamental research issues toward building a data-type-based real time geospatial data stream management system. The thesis makes contributions in the following areas: geo-stream data models, aggregation, window-based nearest neighbor operators, and query optimization strategies. The proposed geo-stream data model is based on second-order logic and multi-typed algebra. Both abstract and discrete data models are proposed and exemplified. I further propose two useful geo-stream operators, namely Region By and WNN, which abstract common aggregation and nearest neighbor queries as generalized data model constructs. Finally, I propose three query optimization algorithms based on spatial, temporal, and spatio-temporal constraints of geo-streams. I show the effectiveness of the data model through many query examples. The effectiveness and the efficiency of the algorithms are validated through extensive experiments on both synthetic and real data sets. This work established the fundamental building blocks toward a full-fledged geo-stream database management system and has potential impact in many …
Date: May 2011
Creator: Zhang, Chengyang
System: The UNT Digital Library
A Wireless Traffic Surveillance System Using Video Analytics (open access)

A Wireless Traffic Surveillance System Using Video Analytics

Video surveillance systems have been commonly used in transportation systems to support traffic monitoring, speed estimation, and incident detection. However, there are several challenges in developing and deploying such systems, including high development and maintenance costs, bandwidth bottleneck for long range link, and lack of advanced analytics. In this thesis, I leverage current wireless, video camera, and analytics technologies, and present a wireless traffic monitoring system. I first present an overview of the system. Then I describe the site investigation and several test links with different hardware/software configurations to demonstrate the effectiveness of the system. The system development process was documented to provide guidelines for future development. Furthermore, I propose a novel speed-estimation analytics algorithm that takes into consideration roads with slope angles. I prove the correctness of the algorithm theoretically, and validate the effectiveness of the algorithm experimentally. The experimental results on both synthetic and real dataset show that the algorithm is more accurate than the baseline algorithm 80% of the time. On average the accuracy improvement of speed estimation is over 3.7% even for very small slope angles.
Date: May 2011
Creator: Luo, Ning
System: The UNT Digital Library
Cuff-less Blood Pressure Measurement Using a Smart Phone (open access)

Cuff-less Blood Pressure Measurement Using a Smart Phone

Blood pressure is vital sign information that physicians often need as preliminary data for immediate intervention during emergency situations or for regular monitoring of people with cardiovascular diseases. Despite the availability of portable blood pressure meters in the market, they are not regularly carried by people, creating a need for an ultra-portable measurement platform or device that can be easily carried and used at all times. One such device is the smartphone which, according to comScore survey is used by 26.2% of the US adult population. the mass production of these phones with built-in sensors and high computation power has created numerous possibilities for application development in different domains including biomedical. Motivated by this capability and their extensive usage, this thesis focuses on developing a blood pressure measurement platform on smartphones. Specifically, I developed a blood pressure measurement system on a smart phone using the built-in camera and a customized external microphone. the system consists of first obtaining heart beats using the microphone and finger pulse with the camera, and finally calculating the blood pressure using the recorded data. I developed techniques for finding the best location for obtaining the data, making the system usable by all categories of people. …
Date: May 2012
Creator: Jonnada, Srikanth
System: The UNT Digital Library
A Driver, Vehicle and Road Safety System Using Smartphones (open access)

A Driver, Vehicle and Road Safety System Using Smartphones

As vehicle manufacturers continue to increase their emphasis on safety with advanced driver assistance systems (ADAS), I propose a ubiquitous device that is able to analyze and advise on safety conditions. Mobile smartphones are increasing in popularity among younger generations with an estimated 64% of 25-34 year olds already using one in their daily lives. with over 10 million car accidents reported in the United States each year, car manufacturers have shifted their focus of a passive approach (airbags) to more active by adding features associated with ADAS (lane departure warnings). However, vehicles manufactured with these sensors are not economically priced while older vehicles might only have passive safety features. Given its accessibility and portability, I target a mobile smartphone as a device to compliment ADAS that can bring a driver assist to any vehicle without regards for any on-vehicle communication system requirements. I use the 3-axis accelerometer of multiple Android based smartphone to record and analyze various safety factors which can influence a driver while operating a vehicle. These influences with respect to the driver, vehicle and road are lane change maneuvers, vehicular comfort and road conditions. Each factor could potentially be hazardous to the health of the driver, …
Date: May 2012
Creator: Gozick, Brandon
System: The UNT Digital Library
A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics (open access)

A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics

Epidemics have caused major human and monetary losses through the course of human civilization. It is very important that epidemiologists and public health personnel are prepared to handle an impending infectious disease outbreak. the ever-changing demographics, evolving infrastructural resources of geographic regions, emerging and re-emerging diseases, compel the use of simulation to predict disease dynamics. By the means of simulation, public health personnel and epidemiologists can predict the disease dynamics, population groups at risk and their geographic locations beforehand, so that they are prepared to respond in case of an epidemic outbreak. As a consequence of the large numbers of individuals and inter-personal interactions involved in simulating infectious disease spread in a region such as a county, sizeable amounts of data may be produced that have to be analyzed. Methods to visualize this data would be effective in facilitating people from diverse disciplines understand and analyze the simulation. This thesis proposes a framework to simulate and visualize the spread of an infectious disease in a population of a region such as a county. As real-world populations have a non-homogeneous demographic and spatial distribution, this framework models the spread of an infectious disease based on population of and geographic distance between …
Date: May 2012
Creator: Indrakanti, Saratchandra
System: The UNT Digital Library
GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction (open access)

GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction

In the United States, smartphone ownership surpassed 69.5 million in February 2011 with a large portion of those users (20%) downloading applications (apps) that enhance the usability of a device by adding additional functionality. a large percentage of apps are written specifically to utilize the geographical position of a mobile device. One of the prime factors in developing location prediction models is the use of historical data to train such a model. with larger sets of training data, prediction algorithms become more accurate; however, the use of historical data can quickly become a downfall if the GPS stream is not collected or processed correctly. Inaccurate or incomplete or even improperly interpreted historical data can lead to the inability to develop accurately performing prediction algorithms. As GPS chipsets become the standard in the ever increasing number of mobile devices, the opportunity for the collection of GPS data increases remarkably. the goal of this study is to build a comprehensive system that addresses the following challenges: (1) collection of GPS data streams in a manner such that the data is highly usable and has a reduction in errors; (2) processing and reduction of the collected data in order to prepare it and …
Date: May 2012
Creator: Griffin, Terry W.
System: The UNT Digital Library
Incremental Learning with Large Datasets (open access)

Incremental Learning with Large Datasets

This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from …
Date: May 2012
Creator: Giritharan, Balathasan
System: The UNT Digital Library
Metamodeling-based Fast Optimization of  Nanoscale Ams-socs (open access)

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their …
Date: May 2012
Creator: Garitselov, Oleg
System: The UNT Digital Library
Rapid Prototyping and Design of a Fast Random Number Generator (open access)

Rapid Prototyping and Design of a Fast Random Number Generator

Information in the form of online multimedia, bank accounts, or password usage for diverse applications needs some form of security. the core feature of many security systems is the generation of true random or pseudorandom numbers. Hence reliable generators of such numbers are indispensable. the fundamental hurdle is that digital computers cannot generate truly random numbers because the states and transitions of digital systems are well understood and predictable. Nothing in a digital computer happens truly randomly. Digital computers are sequential machines that perform a current state and move to the next state in a deterministic fashion. to generate any secure hash or encrypted word a random number is needed. But since computers are not random, random sequences are commonly used. Random sequences are algorithms that generate a pattern of values that appear to be random but after some time start repeating. This thesis implements a digital random number generator using MATLAB, FGPA prototyping, and custom silicon design. This random number generator is able to use a truly random CMOS source to generate the random number. Statistical benchmarks are used to test the results and to show that the design works. Thus the proposed random number generator will be useful …
Date: May 2012
Creator: Franco, Juan
System: The UNT Digital Library
Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures (open access)

Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Hand and arm gestures are a great way of communication when you don't want to be heard, quieter and often more reliable than whispering into a radio mike. In recent years hand gesture identification became a major active area of research due its use in various applications. The objective of my work is to develop an integrated sensor system, which will enable tactical squads and SWAT teams to communicate when there is absence of a Line of Sight or in the presence of any obstacles. The gesture set involved in this work is the standardized hand signals for close range engagement operations used by military and SWAT teams. The gesture sets involved in this work are broadly divided into finger movements and arm movements. The core components of the integrated sensor system are: Surface EMG sensors, Flex sensors and accelerometers. Surface EMG is the electrical activity produced by muscle contractions and measured by sensors directly attached to the skin. Bend Sensors use a piezo resistive material to detect the bend. The sensor output is determined by both the angle between the ends of the sensor as well as the flex radius. Accelerometers sense the dynamic acceleration and inclination in 3 …
Date: May 2013
Creator: Akumalla, Sarath Chandra
System: The UNT Digital Library
Exploring Memristor Based Analog Design in Simscape (open access)

Exploring Memristor Based Analog Design in Simscape

With conventional CMOS technologies approaching their scaling limits, researchers are actively investigating alternative technologies for ever increasing computing and mobile demand. A number of different technologies are currently being studied by different research groups. In the last decade, one-dimensional (1D) carbon nanotubes (CNT), graphene, which is a two-dimensional (2D) natural occurring carbon rolled in tubular form, and zero-dimensional (0D) fullerenes have been the subject of intensive research. In 2008, HP Labs announced a ground-breaking fabrication of memristors, the fourth fundamental element postulated by Chua at the University of California, Berkeley in 1971. In the last few years, the memristor has gained a lot of attention from the research community. In-depth studies of the memristor and its analog behavior have convinced the community that it has the potential in future nano-architectures for optimization of high-density memory and neuromorphic computing architectures. The objective of this thesis is to explore memristors for analog and mixed-signal system design using Simscape. This thesis presents a memristor model in the Simscape language. Simscape has been used as it has the potential for modeling large systems. A memristor based programmable oscillator is also presented with simulation results and characterization. In addition, simulation results of different memristor models …
Date: May 2013
Creator: Gautam, Mahesh
System: The UNT Digital Library
Extrapolating Subjectivity Research to Other Languages (open access)

Extrapolating Subjectivity Research to Other Languages

Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the …
Date: May 2013
Creator: Banea, Carmen
System: The UNT Digital Library
Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings (open access)

Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the …
Date: May 2013
Creator: Sinha, Ravi Som
System: The UNT Digital Library
Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams (open access)

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP …
Date: May 2013
Creator: Zheng, Geng
System: The UNT Digital Library
Modeling Alcohol Consumption Using Blog Data (open access)

Modeling Alcohol Consumption Using Blog Data

How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data.
Date: May 2013
Creator: Koh, Kok Chuan
System: The UNT Digital Library
Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks (open access)

Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks

Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization …
Date: May 2013
Creator: Loza, Olivia G.
System: The UNT Digital Library
Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems (open access)

Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the …
Date: May 2014
Creator: Guan, Qiang
System: The UNT Digital Library
Ddos Defense Against Botnets in the Mobile Cloud (open access)

Ddos Defense Against Botnets in the Mobile Cloud

Mobile phone advancements and ubiquitous internet connectivity are resulting in ever expanding possibilities in the application of smart phones. Users of mobile phones are now capable of hosting server applications from their personal devices. Whether providing services individually or in an ad hoc network setting the devices are currently not configured for defending against distributed denial of service (DDoS) attacks. These attacks, often launched from a botnet, have existed in the space of personal computing for decades but recently have begun showing up on mobile devices. Research is done first into the required steps to develop a potential botnet on the Android platform. This includes testing for the amount of malicious traffic an Android phone would be capable of generating for a DDoS attack. On the other end of the spectrum is the need of mobile devices running networked applications to develop security against DDoS attacks. For this mobile, phones are setup, with web servers running Apache to simulate users running internet connected applications for either local ad hoc networks or serving to the internet. Testing is done for the viability of using commonly available modules developed for Apache and intended for servers as well as finding baseline capabilities of …
Date: May 2014
Creator: Jensen, David
System: The UNT Digital Library
Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits (open access)

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. …
Date: May 2014
Creator: Okobiah, Oghenekarho
System: The UNT Digital Library
Monitoring Dengue Outbreaks Using Online Data (open access)

Monitoring Dengue Outbreaks Using Online Data

Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Date: May 2014
Creator: Chartree, Jedsada
System: The UNT Digital Library