Degree Department

Month

Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen Bonds (open access)

Part 1. Investigation of Aluminum Amino Acid Complexes; Part 2. Structural Studies of Aluminum Chalcogen Bonds

Five different complexes of aluminum and amino acids have been synthesized and characterized. Reaction between aluminum halides and amino acids that do not contain either a carboxylate or a hydroxy group in the side chain produce complexes of the general formula, [Al(amino acid)_n(halide)_3-n]_m. The most prevalent form of this form of complex is where n = 2, and an example of this in which the halide is replaced by hydroxide ligand has been structurally characterized. The complex for which n = 3 may be obtained by employing a large excess of acid, and that for which n = 1 may be obtained by employing either equimolar conditions or an excess of aluminum halide. Reactions of aluminum halides with amino acids that contain either a carboxylate or hydroxy-containing side chain may result in complexes in which the side-chain is also bound. These proved impossible to characterize fully in the case of aspartic acid. For serine, however, a complex in which the amino acid binds in a chelating fashion through both the carboxylate and hydroxy groups was isolated. It was possible to form complexes when utilizing aluminum alkyls as the metal source. However, these complexes could only be isolated when the reactivity …
Date: May 1996
Creator: Gravelle, Philip W. (Philip Wyn)
System: The UNT Digital Library
NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes (open access)

NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes

Investigations presented here are (a) the study of reorientational dynamics and internal rotation in transition metal complexes by NMR relaxation experiments, and (b) the study of ligand exchange dynamics in transition metal complexes by exchange NMR experiments. The phenyl ring rotation in Ru3(CO)9(μ3-CO)(μ3-NPh) and Re(Co)2(CO)10(μ3- CPh) was monitored by 13C NMR relaxation experiments to probe intramolecular electronic and/or steric interactions. It was found that the rotation is relatively free in the first complex, but is restrained in the second one. The steric interactions in the complexes were ascertained by the measurement of the closest approach intramolecular distances. The rotational energy barriers in the two complexes were also calculated by using both the Extended Hiickel and Fenske-Hall methods. The study suggests that the barrier is due mainly to the steric interactions. The exchange NMR study revealed two carbonyl exchange processes in both Ru3(CO)9(μ3-CO)(μ3-NPh) and Ru3(CO)8(PPh3)(μ3-CO)(μ3-NPh). The lower energy process is a tripodal rotation of the terminal carbonyls. The higher energy process, resulting in the exchange between the equatorial and bridging carbonyls, but not between the axial and bridging carbonyls, involves the concerted formation of edge-bridging μ2-CO moieties. The effect of the PPh3 ligand on the carbonyl exchange rates has been discussed. …
Date: May 1996
Creator: Wang, Dongqing
System: The UNT Digital Library