States

392 Matching Results

Results open in a new window/tab.

Fractional Brownian motion and dynamic approach to complexity. (open access)

Fractional Brownian motion and dynamic approach to complexity.

The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power law with index m=1.5. However, with theoretical and numerical arguments, it is proved that this is the special case of a more general condition, insofar as the recrossing times produced by the dynamic FBM generates process with m=2-H. Later, the model of ballistic deposition is studied, which is as a simple way to establish cooperation among the columns of a growing surface, to show that cooperation generates memory properties and, at same time, non-Poisson renewal events. Finally, the connection between trajectory and density memory is discussed, showing that the trajectory memory does not necessarily yields density memory, and density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory.
Date: August 2007
Creator: Cakir, Rasit
System: The UNT Digital Library
Towards Increased Precision of the 4He:23P1→23P2 Transition Measurement Using Laser Spectroscopy (open access)

Towards Increased Precision of the 4He:23P1→23P2 Transition Measurement Using Laser Spectroscopy

Significant sub-systems were created and others enhanced providing a platform for an order of magnitude precision increase of the small 4He interval - 23P1→23P2 laser spectroscopy measurement, as well as other helium transitions. These measurements serve as tests of helium theory and quantum electro-dynamics in general. Many improvements to the original experiment are discussed and characterized. In particular, counting speed increased 10x, the signal level was doubled, a novel Doppler shift minimization technique was implemented, a control node re-architecture was realized along with many useful features, and the development environment was updated. An initial 28% precision improvement was achieved also providing a foundation for additional gain via a created smaller and more heavily windowed vacuum cavity and picomotor controls.
Date: December 2021
Creator: Cameron, Garnet
System: The UNT Digital Library
Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles (open access)

Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles

This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By following a line of investigation initiated by Boltzmann, a Generalized Helmholtz Theorem is stated and proved. This theorem provides us with a good microscopic analogue of thermodynamic entropy. This is the volume entropy, namely the logarithm of the volume of phase space enclosed by the constant energy hyper-surface. By using quantum mechanics only, it is shown that such entropy can only increase. This can be seen as a novel rigorous proof of the Second Law of Thermodynamics that sheds new light onto the arrow of time problem. The volume entropy behaves in a thermodynamic-like way independent of the number of degrees of freedom of the system, indicating that a whole thermodynamic-like world exists at the microscopic level. It is also shown that breaking of ergodicity leads to microcanonical …
Date: May 2008
Creator: Campisi, Michele
System: The UNT Digital Library

Precision Atomic Spectroscopy with an Integrated Electro- Optic Modulator and DBR Diode Laser at 1083nm

Access: Use of this item is restricted to the UNT Community
We have explored the use of recently developed high speed integrated electro optic modulators and DBR diode lasers as a tool for precision laser studies of atoms. In particular, we have developed a technique using a high speed modulator as a key element and applied it to the study of the fine structure of the 23P state of atomic helium. This state has been of long standing interest in atomic physics and its study has been the aim of several recent experiments using various precision techniques. We present our method and results, which will describe a new method for determining the fine structure constant, and lead to a precision test of atomic theory.
Date: December 1999
Creator: Castillega, Jaime
System: The UNT Digital Library
Computational Techniques for Accelerated Materials Discovery (open access)

Computational Techniques for Accelerated Materials Discovery

Increasing ubiquity of computational resources has enabled simulation of complex electronic systems and modern materials. The PAOFLOW software package is a tool designed to construct and analyze tight binding Hamiltonians from the solutions of DFT calculations. PAOFLOW leverages localized basis sets to greatly reduce computational costs of post-processing QE simulation results, enabling efficient determination of properties such as electronic density, band structures in the presence of electric or magnetic fields, magnetic or spin circular dichroism, spin-texture, Fermi surfaces, spin or anomalous Hall conductivity (SHC or AHC), electronic transport, and more. PAOFLOW's broad functionality is detailed in this work, and several independent studies where PAOFLOW's capabilities directly enabled research on promising candidates for ferroelectric and spintronic based technologies are described. Today, Quantum computers are at the forefront of computational information science. Materials scientists and quantum chemists can use quantum computers to simulate interacting systems of fermions, without having to perform the iterative methods of classical computing. This dissertation also describes a study where the band structure for silicon is simulated for the first time on quantum hardware and broadens this concept for simulating band structures of generic crystalline structures on quantum machines.
Date: December 2021
Creator: Cerasoli, Franklin
System: The UNT Digital Library
The Physics of Gaseous Exposures on Active Field Emission Microcathode Arrays (open access)

The Physics of Gaseous Exposures on Active Field Emission Microcathode Arrays

The interaction of active molybdenum field emission microcathode arrays with oxygen, water, carbon dioxide, methane, hydrogen and helium gases was studied. Experiments were setup to measure the emission characteristics as a function of gas exposures. The resulting changes in the surface work function of the tips were determined from the Fowler-Nordheim plots. The kinetics of the FEA-gas interaction were studied by observing the ion species originating from the array during and after gas exposures with a high resolution quadrupole mass spectrometer. With the work function data and the mass spectrometry information, the mechanisms responsible for emission degradation and subsequent device recovery after exposures have been determined. The data obtained was used in estimating the device lifetimes under various vacuum environments. Also it was found that the gas exposure effects are similar in dc and pulsed modes of operation of the arrays, thus permitting the use of dc mode testing as an effective acceleration method in establishing the device lifetimes under various vacuum conditions. The vacuum conditions required for the long term emission current stability and reliability of vacuum microelectronic devices employing FEAs are established. Exposure of Mo field emitter arrays to oxygen bearing species like oxygen, water and carbon dioxide …
Date: September 1996
Creator: Chalamala, Babu Reddy
System: The UNT Digital Library
The Concept of Collision Strength and Its Applications (open access)

The Concept of Collision Strength and Its Applications

Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equation has a five-fold integral collision term that is complicated. Chandrasekhar and Spitzer's approaches to the linear Fokker-Planck coefficients have several approximations. An effective variable-change technique has been developed in this dissertation as an alternative to scattering angle as the measure of collision strength. By introducing the square of the reduced impulse or its equivalencies as a collision strength variable, many plasma calculations have been simplified. The five-fold linear Boltzmann collision integral and linearized Boltzmann collision integral are simplified to three-fold integrals. The arbitrary order linear Fokker-Planck coefficients are calculated and expressed in a uniform expression. The new theory provides a simple and exact method for describing the equilibrium plasma collision rate, and a precise calculation of the equilibrium relaxation time. It generalizes …
Date: May 2004
Creator: Chang, Yongbin
System: The UNT Digital Library
Spatiotemporal Properties of Coupled Nonlinear Oscillators (open access)

Spatiotemporal Properties of Coupled Nonlinear Oscillators

Spatiotemporal properties of classical coupled nonlinear oscillators are investigated in this thesis. Chapter 1 gives an introduction to nonlinear lattices and to the concept of breathers, that are spatially localized and temporally periodic excitation in nonlinear lattices. The concept of anti-continuous limit that provides the basic methodology in probing spatiotemporal breather properties is discussed. In Chapter 2, the general approach for finding exact breather solutions from the anti-continuous limit is examined, and the rotating wave approximation(RWA) is applied to probe the spatial structure of static breathers. Numerical evidence reveals that the RWA relates the spatial structure of stable multi-breathers to a single breather of the same frequency. Chapter 3 presents linear stability analysis of static breathers and gives a systematic way to construct mobile breathers. Formation and collision properties of this moving breathers are also studied. Chapter 4 discusses dynamics of kinks and anti-kinks in hydrogen-bonded chains in the context of two-component soliton model. From molecular dynamics simulations with finite temperature, it is observed that, in a real system (eg. ice), a pair of kink and anti-kink can evolve into a moving-breather-like excitation. Chapter 5 is devoted to the understand of the effects of disorder in the Holstein model. The …
Date: July 1996
Creator: Chen, Ding
System: The UNT Digital Library

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Access: Use of this item is restricted to the UNT Community
Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunications industry. Therefore, the study of Er-doped Si nanoparticles may have practical significance. The goals of the research described in this dissertation are to investigate vapor phase pyrolysis methods and to characterize the microstructure and associated defects, particles size distributions and photoluminescence efficiencies of doped and undoped Si nanoparticles using analytical transmission electron microscopy, high resolution electron microscopy, and optical spectroscopy. Er-doped and undoped Si nanoparticles were synthesized via vapor-phase pyrolysis of disilane at Texas Christian University. To achieve monodisperse size distributions, a process with fast nucleation and slow growth was employed. Disilane was diluted to 0.48% with helium. A horizontal pyrolysis oven was maintained at a temperature of 1000 °C. The oven length was varied from 1.5 cm to 6.0 cm to investigate the influence of oven length on the properties of the nanoparticles. …
Date: May 2000
Creator: Chen, Yandong
System: The UNT Digital Library
Synthesis and Study of Engineered Heterogenous Polymer Gels (open access)

Synthesis and Study of Engineered Heterogenous Polymer Gels

This dissertation studies physical properties and technological applications of engineered heterogenous polymer gels. Such gels are synthesized based on modulation of gel chemical nature in space. The shape memory gels have been developed in this study by using the modulated gel technology. At room temperature, they form a straight line. As the temperature is increased, they spontaneously bend or curl into a predetermined shape such as a letter of the alphabet, a numerical number, a spiral, a square, or a fish. The shape changes are reversible. The heterogenous structures have been also obtained on the gel surface. The central idea is to cover a dehydrated gel surface with a patterned mask, then to sputter-deposit a gold film onto it. After removing the mask, a gold pattern is left on the gel surface. Periodical surface array can serve as gratings to diffract light. The grating constant can be continuously changed by the external environmental stimuli such as temperature and electric field. Several applications of gels with periodic surface arrays as sensors for measuring gel swelling ratio, internal strain under an uniaxial stress, and shear modulus have been demonstrated. The porous NIPA gels have been synthesized by suspension technique. Microstructures of newly …
Date: August 1998
Creator: Chen, Yuanye
System: The UNT Digital Library
A Theoretical Investigation of Bound Roton Pairs in Superfluid Helium-4 (open access)

A Theoretical Investigation of Bound Roton Pairs in Superfluid Helium-4

The Bogoliubov theory of excitations in superfluid helium is used to study collective modes at zero temperature. A repulsive delta function shell potential is used in the quasiparticle excitation energy spectrum to fit the observed elementary excitation spectrum, except in the plateau region. The linearized equation of motion method is used to obtain the secular equation for a collective mode consisting of a linear combination of one and two free quasiparticles of zero total momentum. It is shown that in this case for high-lying collective modes, vertices involving three quasiparticles cancel, and only vertices involving four quasiparticles are important. A decomposition into various angular momentum states is then made. Bound roton pairs in the angular momentum D-state observed in light-scattering experiments exist only for an attractive coupling between helium atoms in this oversimplified model. Thus, the interaction between particles can be reinterpreted as a phenomenological attractive coupling between quasiparticles, in order to explain the Raman scattering from bound roton pairs in superfluid helium.
Date: August 1974
Creator: Cheng, Shih-ta
System: The UNT Digital Library
Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel (open access)

Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG microgel is biocompatible with human body and has been approved by FDA while PNIPAM has not. PEG microgels with core-shell structure are synthesized with a two-step free radical polymerization and characterized with DLS, SLS and UV–Vis. The dynamic mechanics of melting and recrystallizing of the PEG core-shell microgel are presented and discussed. Photonic crystals of PEG microgels were synthesized and characterized. The crystal can be isolated in a thin film or a bulk column. The phase transition of PEG microgel was simulated with the mean field theory. The enthalpy and entropy of phase transition can be estimated from the best …
Date: December 2012
Creator: Chi, Chenglin
System: The UNT Digital Library
Relaxation Time Measurements for Collision Processes in the Surface Layers of Conductors and Semiconductors Near 10 Ghz (open access)

Relaxation Time Measurements for Collision Processes in the Surface Layers of Conductors and Semiconductors Near 10 Ghz

This thesis represents one phase of a joint effort of research on the properties of liquids and solids. This work is concerned primarily with the microwave properties of solids. In this investigation the properties exhibited by conductor and semiconductor materials when they are subjected to electromagnetic radiation of microwave frequency are studied. The method utilized in this experiment is the perturbation of a resonant cavity produced by introduction of a cylindrically shaped sample into it.
Date: December 1973
Creator: Childress, Larry Wayne
System: The UNT Digital Library
Magnetically Driven Instabilities in Gas Discharges (open access)

Magnetically Driven Instabilities in Gas Discharges

In the present experiment a gas discharge plasma generator was designed and constructed and a search was made for evidence of a plasma instability due to the influence of an externally applied magnetic field. The evidence for such an unstable mode of operation is too indirect to make a possible conclusion, but an approach to more certain identification will be indicated.
Date: August 1963
Creator: Choate, Jimmie W.
System: The UNT Digital Library
Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences (open access)

Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences

In this work I investigate the expulsion of carriers from nanostructures using the double-barrier quantum well (DBQW) as an example and discuss manifestations of this effect in the spectrum of the DBQW in absence of bias, and in the tunneling current in presence of bias. Assuming equality of the Fermi energy in all regions of the considered system, I compute the relative density of carriers localized in the DBQW and conclude that a fraction of carriers is expelled from this nanostructure.
Date: March 1992
Creator: Chyla, Wojciech Tadeusz
System: The UNT Digital Library
Transport Processes in Synchrotrons (open access)

Transport Processes in Synchrotrons

This thesis examines the evolution of beams in synchrotrons. Following an introduction to accelerator physics in Chapter 1, in Chapter 2 I describe the Fermilab E778 'diffusion' experiment. Families of sextupoles were powered to drive the 2/5 resonance, and a beam was then kicked to populate a nonlinear region of the transverse phase space. The beam was then observed over periods of approximately 30 minutes for a variety of kick amplitudes and physical apertures. In Chapter 3 comments about the analytic treatment of such systems are discussed, including the assumptions inherent in the conventional treatment. I motivate my use of a simplified model in Chapter 4 after examining common computational methods. Deriving the model from the formalism of traditional accelerator physics, I discuss its implementation on a massively parallel computer, the Intel iPSC/860 hypercube, and examine the performance of this algorithm in detail. Using the simple model to perform the numerical experiment equivalent to E778 is the subject of Chapter 5. I derive the parameters needed for the simple model based upon the physical experiment. Both three dimensional cases and cases with reduced dimensionality are run. From power supply ripple data and an electrical model of the magnet string, I …
Date: May 1994
Creator: Cole, Benjamin H. (Benjamin Holland)
System: The UNT Digital Library
Temperature Dependence of Line Widths of the Inversion Spectra of Ammonia (open access)

Temperature Dependence of Line Widths of the Inversion Spectra of Ammonia

One of the purposes of this work is to investigate modifications that have to be made to a standard source-modulation microwave spectrograph so that it can be used to study gases at various temperatures. Another objective in this work is to determine experimentally the function of temperature that describes how the line widths of microwave spectral lines vary with changing temperature. The most important segment of the study is the temperature dependence of the line width since from an accurate knowledge of this temperature dependence one is able to determine what molecular force fields are present and the relative importance of parts of the molecular force field.
Date: August 1969
Creator: Cook, Charles E.
System: The UNT Digital Library
Quantized Hydrodynamics (open access)

Quantized Hydrodynamics

The object of this paper is to derive Landau's theory of quantized hydrodynamics from the many-particle Schroedinger equation. Landau's results are obtained, together with an additional term in the Hamiltonian.
Date: August 1972
Creator: Coomer, Grant C.
System: The UNT Digital Library
Studies of Charged Particle Dynamics for Antihydrogen Synthesis (open access)

Studies of Charged Particle Dynamics for Antihydrogen Synthesis

Synthesis and capture of antihydrogen in controlled laboratory conditions will enable precise studies of neutral antimatter. The work presented deals with some of the physics pertinent to manipulating charged antiparticles in order to create neutral antimatter, and may be applicable to other scenarios of plasma confinement and charged particle interaction. The topics covered include the electrostatic confinement of a reflecting ion beam and the transverse confinement of an ion beam in a purely electrostatic configuration; the charge sign effect on the Coulomb logarithm for a two component (e.g., antihydrogen) plasma in a Penning trap as well as the collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length; and the formation of magnetobound positronium and protonium.
Date: December 2014
Creator: Correa, Jose Ricardo
System: The UNT Digital Library
Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides (open access)

Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides

The semiconducting silicides offer significant potential for use in optoelectronic devices. Full implementation of the materials, however, requires the ability to tailor the energy gap and band structure to permit the synthesis of heterojunctions. One promising approach is to alloy the silicides with Ge. As part of an investigation into the synthesis of semiconducting silicide heterostructures, a series of β-Fe(Si1−xGex)2 epilayer samples, with nominal alloy content in the range 0 < x < 0.15, have been prepared by molecular beam epitaxy on Si(100). I present results of the epitaxial and crystalline quality of the films, as determined by reflection high-energy electron diffraction, Rutherford backscattering spectroscopy, and double crystal x-ray diffraction, and of the band gap dependence on the alloy composition, as determined by Fourier transform infrared spectroscopy. A reduction in band gap was observed with increasing Ge content, in agreement with previous theoretical predictions. However Ge segregation was also observed in β-Fe(Si1−xGex)2 epilayers when x > 0.04. Osmium silicide films have been grown by molecular beam epitaxy on Si(100). The silicides have been grown using e-beam evaporation sources for both Os and Si onto Si(100) substrates at varying growth rates and temperatures ranging from 600-700ºC. The resulting films have been …
Date: August 2009
Creator: Cottier, Ryan James
System: The UNT Digital Library
Extinguishment of a Low-pressure Argon Discharge by a Magnetic Field (open access)

Extinguishment of a Low-pressure Argon Discharge by a Magnetic Field

The experiment in this study involves the extinguishment of a low-pressure argon discharge by a magnetic field.
Date: January 1964
Creator: Criswell, David Russell
System: The UNT Digital Library
K-Shell Ionization Cross Sections For Elements Se To Pd: 0.4 To 2.0 MeV (open access)

K-Shell Ionization Cross Sections For Elements Se To Pd: 0.4 To 2.0 MeV

K-Shell ionization cross section for protons over the energy range of 0.4 to 2.0 MeV have been measured on thin targets of the elements Se, Br, Rb, Sr, Y, Mo and Pd. Total x-ray and ionization cross sections for the K-shell are reported. The experimental values of the ionization cross sections are compared to the non-relativistic plane-wave Born approximation, the binary-encounter approximation, the constrained binary-encounter approximation, and the plane-wave Born approximation with corrections for Coulomb-deflection and binding energy effects.
Date: December 1974
Creator: Criswell, Tommy L.
System: The UNT Digital Library
Magnetic Resonance of Protons in the Earth's Magnetic Field (open access)

Magnetic Resonance of Protons in the Earth's Magnetic Field

The purpose of the work reported here was to determine the feasibility of applying the nuclear induction technique of Bloch to the direct observation of nuclear magnetic resonance in the very weak magnetic field of the earth.
Date: August 1959
Creator: Crosby, Richard Hill
System: The UNT Digital Library
Nonlinear Optical Properties of GaAs at 1.06 micron, picosecond Pulse Investigation and Applications (open access)

Nonlinear Optical Properties of GaAs at 1.06 micron, picosecond Pulse Investigation and Applications

The author explores absorptive and refractive optical nonlinearities at 1.06 [mu]m in bulk, semi-insulating, undoped GaAs with a particular emphasis on the influence of the native deep-level defect known as EL2. Picosecond pump-probe experimental technique is used to study the speed, magnitude, and origin of the absorptive and refractive optical nonlinearities and to characterize the dynamics of the optical excitation of EL2 in three distinctly different undoped, semi-insulating GaAs samples. Intense optical excitation of these materials leads to the redistribution of charge among the EL2 states resulting in an absorptive nonlinearity due to different cross sections for electron and hole generation through this level. This absorptive nonlinearity is used in conjunction with the linear optical properties of the material and independent information regarding the EL2 concentration to extract the cross section ratio [sigma][sub p]/[sigma][sub e] [approx equal]0.8, where [sigma][sub p](e) is the absorption cross section for hole (electron) generation from EL2[sup +] (EL2[sup 0]). The picosecond pump-probe technique can be used to determine that EL2/EL2[sup +]density ratio in an arbitrary undoped, semi-insulating GaAs sample. The author describes the use of complementary picosecond pump-probe techniques that are designed to isolate and quantify cumulative and instantaneous absorptive and refractive nonlinear processes. Numerical …
Date: August 1992
Creator: Cui, A.G. (Aiguo G.)
System: The UNT Digital Library