Automatic Frequency Control of Microwave Radiation Sources (open access)

Automatic Frequency Control of Microwave Radiation Sources

Resonant cavity controlled klystron frequency stabilization circuits and quartz-crystal oscillator frequency stabilization circuits were investigated for reflex klystrons operating at frequencies in the X-band range. The crystal oscillator circuit employed achieved better than 2 parts in 10 in frequency stability. A test of the functional properties of the frequency standard was made using the Stark effect in molecules.
Date: August 1979
Creator: Payne, Bobby D.
System: The UNT Digital Library
CO₂-Laser Induced Hot Electron Magneto-Transport Effects in n-InSb (open access)

CO₂-Laser Induced Hot Electron Magneto-Transport Effects in n-InSb

The effects of optical heating via infrared free carrier absorption on the electron magneto-transport properties of n-InSb at helium temperatures have been studied for the first time. Oscillatory photoconductivity (OPC) type structure is seen in the photon energy dependence of the transport properties. A C0₂ laser (hω = 115 to 135 meV) was used as the optical source. Concentrations between 1 x 10¹⁵ cm⁻³ and 2 x 10¹⁶ cm⁻³ were studied. The conclusions of this study are that the energy relaxation of high energy photoexcited electrons, generated by free carrier absorption of C0₂ laser radiation in degenerate n-InSb at liquid helium temperatures, is by emission of a maximum number of optical phonons, and that this relaxation mechanism produces OPC type structure in the photon energy dependence of the electron temperature of the conduction band electron gas. This structure is seen, therefore, in the transport properties of the sample, including the Shubnikovde Haas effect, the effective absorption coefficient, and the photoconductivity (mobility) response (lower concentrations only). In addition, the highest concentration studied, nₑ = ~2 x 10¹⁶ cm⁻³, sets an experimental lower limit on the concentration at which electron-electron scattering will become the dominant energy relaxation mechanism for the photoexcited electrons, …
Date: August 1979
Creator: Moore, Bradley T.
System: The UNT Digital Library
Formation of Supersaturated Alloys by Ion Implantation and Pulsed-Laser Annealing (open access)

Formation of Supersaturated Alloys by Ion Implantation and Pulsed-Laser Annealing

Supersaturated substitutional alloys formed by ion implantation and rapid liquid-phase epitaxial regrowth induced by pulsed-laser annealing have been studied using Rutherford-backscattering and ion-channeling analysis. A series of impurities (As, Sb, Bi, Ga, In, Fe, Sn, Cu) have been implanted into single-crystal (001) orientation silicon at doses ranging from 1 x 10^15/cm2 to 1 x 10^17/cm2. The samples were subsequently annealed with a Ω-switched ruby laser (energy density ~1.5 J/cm2, pulse duration 15 x 10-9 sec). Ion-channeling analysis shows that laser annealing incorporates the Group III (Ga, In) and Group V (As, Sb, Bi) impurities into substitutional lattice sites at concentrations far in excess of the equilibrium solid solubility. Channeling measurements indicate the silicon crystal is essentially defect free after laser annealing. The maximum Group III and Group V dopant concentrations that can be incorporated into substitutional lattice sites are determined for the present laser-annealing conditions. Dopant profiles have been measured before and after annealing using Rutherford backscattering. These experimental profiles are compared to theoretical model calculations which incorporate both dopant diffusion in liquid silicon and a distribution coefficient (k') from the liquid. It is seen that a distribution coefficient (k') far greater than the equilibrium value (k0) is required for …
Date: August 1979
Creator: Wilson, Syd Robert
System: The UNT Digital Library
Fluid Spheres in General Relativity: Exact Solutions and Applications to Astrophysics (open access)

Fluid Spheres in General Relativity: Exact Solutions and Applications to Astrophysics

Exact solutions to Einstein's field equations in the presence of matter are presented. A one parameter family of interior solutions for a static fluid is discussed. It is shown that these solutions can be joined to the Schwarzschild exterior, and hence represent fluid spheres of finite radius. Contained within this family is a set of solutions which are gaseous spheres defined by the vanishing of the density at the surface. One such solution yields an analytic expression which corresponds to the asymptotic numerical solution of Oppenheimer and Volkoff for the degenerate neutron gas. These gaseous spheres have ratios of specific heats that lie between one and two in the vicinity of the origin, increasing outward, but remaining less than the velocity of light throughout.
Date: December 1978
Creator: Whitman, Patrick G.
System: The UNT Digital Library
Room Temperature Gold-Vacuum-Gold Tunneling Experiments (open access)

Room Temperature Gold-Vacuum-Gold Tunneling Experiments

An experiment has been completed which demonstrated quantum mechanical tunneling of electrons between two gold electrodes separated in vacuum. The tunneling current between the gold electrodes has been measured, for fixed voltages of 0.1 and 0.01 volts, as the electrode spacing was varied from a distance of approximately 2.0 nm down to a point where the electrodes touched. Current-voltage characteristics for fixed electrode spacing in the direct tunneling region have also been measured. Numerical calculations of the tunneling current based on the free-electron model of the electrodes and the barrier, an image-potential reduced barrier, and a WKB approximation for the tunneling probability have been performed and compared with Simmons' theory and with the experimental results. Within experimental error the results indicate that an image potential reduced barrier with the modifications suggested by Lang and Kohn gives a close approximation to the true barrier for metal-vacuum-metal tunneling. For the first time, the work function of the electrodes in a tunneling experiment has been deduced from experimental parameters independent of the tunneling device.
Date: August 1978
Creator: Teague, E. C. (Edgar Clayton), 1941-
System: The UNT Digital Library
A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets (open access)

A Study of L-Shell X-Ray Production Cross Sections Due to [Hydrogen-1], [Helium-4], and [Lithium-7] Ion Bombardment of Selected Thin Rare Earth and ₈₂Pb Targets

Thin target L-Shell x-ray production cross sections for protons incident on ₆₂Sm and ₇₀Yb in the energy range of 0.3 to 2.4 MeV/amu, alpha particles incident on ₆₂Sm, ₇₀Yb, and ₈₂Pb in the energy range of 0.15 to 4.8 MeV/amu, and lithium ions incident on ₅₈Ce, ₆₀Nd, ₆₂Sm, ₆₆Dy, ₆₇Ho, ₇₀Yb, and ₈₂Pb in the energy range of 0.8 to 4.4 MeV/amu have been measured. The cross section data have been compared to the planewave Born approximation (PWBA) and the PWBA modified to include binding energy and Coulomb deflection effects. The Lα₁,₂ x-ray production cross sections are best represented by the PWBA modified to include both the binding energy and Coulomb deflection effects (PWBA-BC) over the entire incident ion, incident energy, and target ranges studied. However, the Lγ₁ and Lγ₂,₃,₍₆₎ x-ray production cross sections are best represented by the PWBA except at the lower ion energies, where both the PWBA and PWBA-BC are in disagreement with the data. The comparison of Lα₁,₂/Lγ₂,₃,₍₆₎ ratios to theory reveals that the PWBA-BC does not predict the inflection point substantiated by the data, and the agreement between the data and the PWBA-BC becomes worse as the atomic number of the incident ion increases. Comparison …
Date: May 1978
Creator: Light, Glenn Michael
System: The UNT Digital Library
The Classical Limit of Quantum Mechanics (open access)

The Classical Limit of Quantum Mechanics

The Feynman path integral formulation of quantum mechanics is a path integral representation for a propagator or probability amplitude in going between two points in space-time. The wave function is expressed in terms of an integral equation from which the Schrodinger equation can be derived. On taking the limit h — 0, the method of stationary phase can be applied and Newton's second law of motion is obtained. Also, the condition the phase vanishes leads to the Hamilton - Jacobi equation. The secondary objective of this paper is to study ways of relating quantum mechanics and classical mechanics. The Ehrenfest theorem is applied to a particle in an electromagnetic field. Expressions are found which are the hermitian Lorentz force operator, the hermitian torque operator, and the hermitian power operator.
Date: December 1977
Creator: Hefley, Velton Wade
System: The UNT Digital Library
Target Thickness Dependence of Cu K X-Ray Production for Ions Moving in Thin Solid Cu Targets (open access)

Target Thickness Dependence of Cu K X-Ray Production for Ions Moving in Thin Solid Cu Targets

Measurements of the target thickness dependence of the target x-ray production yield for incident fast heavy ions are reported for thin solid Cu targets as a function of both incident projectile atomic number and energy. The incident ions were F, Al, Si, S, and CI. The charge state of the incident ions was varied in each case to study the target x-ray production for projectiles which had an initial charge state, q, of q = Z₁, q = Z₁ - 1, and q < Z₁ - 1 for F, Al, Si, and S ions and q = Z₁ - 1 and q < Z₁ - 1 for C1 ions. The target thicknesses ranged from 2 to 183 ug/cm². In each case the Cu K x-ray yield exhibits a complex exponential dependence on target thickness. A two-component model which includes contributions to the target x-ray production due to ions with 0 and 1 K vacancies and a three-component model which includes contributions due to ions with 0, 1, and 2 K vacancies are developed to describe the observed target K x-ray yields. The two-component model for the C1 data and the three-component model for the F, Al, Si, S, and C1 …
Date: December 1977
Creator: Gardner, Raymond K.
System: The UNT Digital Library
Measurement of the Rate Coefficients for the Bimolecular and Termolecular Charge Transfer Reactions of He₂⁺ with Ne, Ar, N₂, CO, CO₂, and CH₄ (open access)

Measurement of the Rate Coefficients for the Bimolecular and Termolecular Charge Transfer Reactions of He₂⁺ with Ne, Ar, N₂, CO, CO₂, and CH₄

The problem with which this investigation is concerned is that of measuring the rate coefficients for termolecular charge transfer reactions of He2+ in atmospheric pressure afterglows with the minority reacting species. Of particular interest was the discovery that the presence of a third body can change an improbable charge transfer reaction involving He+2 into a very probable one, as in the case of the reaction with argon. For example, in Tables II and II it was shown that less than a 300 torr pressure of helium was required to double the effective rate of reaction of argon with He2+ while over 3000 torr was required for CH4. The sensitivity of the method has been sufficient to detect termolecular components as small as 2 x 10-30 cm /sec and values were found to range widely from 2 x 10 for Ne to 67 x 10-30 cm6/sec for CO2. The size of these termolecular rates not only served to explain specific anomalous efficiencies of the charge transfer process observed in atmospheric pressure lasers but also suggested the general importance of three-body ion-molecule reactions in higher pressure plasmas.
Date: May 1977
Creator: Lee, Francis Wha-Pyo
System: The UNT Digital Library
Inversion-Asymmetry Splitting of the Conduction Band in N-Type Indium Antimonide (open access)

Inversion-Asymmetry Splitting of the Conduction Band in N-Type Indium Antimonide

The origin of the Shubnikov-de Haas effect, the strain theory developed by Bir and Pikus, and a simple, classical beating-effects model are discussed. The equipment and the experimental techniques used in recording the Shubnikov-de Haas oscillations of n-type indium antimonite are described. The analysis of the experimental data showed that the angular anisotropy of the period of SdH oscillations at zero stress was unmeasurable for low concentration samples as discussed by other workers. Thus the Fermi surfaces of InSb are nearly spherical at low concentration. It was also shown that the Fermi surface of a high concentration sample of InAs is also nearly spherical. The advantages of using the magnetic field modulation and phase sensitive detection techniques in determining the beats are given. The simple, classical beating-effects model is able to explain the experimental beating effect data in InSb. The computer programs used to obtain the theoretical values of the beat nodal position, SdH frequencies, average frequency, the Fermi surface contours, and the energy eigenvalues are given.
Date: December 1976
Creator: Bajaj, Bhushan D.
System: The UNT Digital Library
A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals (open access)

A Classical Theory of the Dielectric Susceptibility of Anharmonic Crystals

An expression for the dielectric susceptibility tensor of a cubic ionic crystal has been derived using the classical Liouville operator. The effect of cubic anharmonic forces is included as a perturbation on the harmonic crystal solution, and a series expansion for the dielectric susceptibility is developed. The most important terms in the series are identified and summed, yielding an expression for the complex susceptibility with an anharmonic contribution which is linearly dependent on temperature. A numerical example shows that both the real and imaginary parts of the susceptibility are continuous, finite functions of frequency.
Date: May 1976
Creator: Kennedy, Howard V.
System: The UNT Digital Library
Theoretical Cross Section for Light Scattering from Superfluid Helium-4 (open access)

Theoretical Cross Section for Light Scattering from Superfluid Helium-4

The finite lifetime of the bound roton pair is included in the theoretical light scattering cross section to explain the shape of the peak in the observed Raman light scattering cross section in He II. A model Hamiltonian is used to describe interactions between quasiparticles for the helium system. The equation of motion for the bound roton pair state, which is taken to be a collective mode of quasiparticle pairs, is solved. The cross section for light scattering is then derived using Fermi's Golden Rule with the bound roton pair as the final state. Since the bound roton pair can decay into two free phonons, a phenomenological width r is included in the cross section. The peak position and shape of the observed cross section are both fitted using a binding energy of εB = 0.37 K for the bound roton pair.
Date: May 1976
Creator: Latham, W. Peters, Jr., 1948-2016.
System: The UNT Digital Library
Investigation of the Effects of Compressive Uniaxial Stress on the Hole Carriers in P-type InSb (open access)

Investigation of the Effects of Compressive Uniaxial Stress on the Hole Carriers in P-type InSb

The influence of uniaxial compression upon the Hall effect ad resistivity of cadmium-doped samples of InSb at 77 K, 64 K, and 12 K are reported. Unilaxial compressions as high as 6 kbar were applied to samples oriented in the {001} and {110} directions. The net hole concentration of the samples were about 5x10^13 cm^-3 at 77 K as determined from the Hall coefficient at 24 kilogauss. The net concentration of hole carriers decreases and then increases exponentially with stress at 77 k and 64 k, while at 12 k there is only a monotonic increase of carrier concentration with stress. Analysis of the hole concentration as a function of stress shows the presence of a deep acceptor level located about 90 meV above the valence band edge in additionb to the 10 meV vadmium acceptor level. The shallow acceptor level does not split with stress. The hole density data is represented very well by models which describe both the variation in the net density of states and motion of the acceptor levels as a function of stress.
Date: December 1975
Creator: Vaughn, Bobby J.
System: The UNT Digital Library
Collision Broadening of Microwave Spectral Lines of Monomeric Formaldehyde and Formic Acid (open access)

Collision Broadening of Microwave Spectral Lines of Monomeric Formaldehyde and Formic Acid

Line width parameters for a number of spectral lines in the pure rotational spectrum of formaldehyde (CH20) and formic acid (HCOOH) have been measured using a sourcemodulated microwave spectrograph. All transitions studied in this investigation were of the type ΔJ=O (i.e. Q-branch transitions), with ΔK-1=0 and ΔK+1 =+l. The center frequencies of the measured lines varied from 8662.0 MHz to 48612.70 MHz. The experimentally determined collision diameters for self broadening interactions involving HCOOH and CH2 Q molecules were found to be 2 - 27 per cent less than those calculated by the Murphy-Boggs theory of collision broadening. Much better agreement between a simplified broadening scheme for symmetric top molecules and the observed foreign-gas collision diameters is obtained by using Birnbaum's theory.
Date: August 1975
Creator: Venkatachar, Arun C.
System: The UNT Digital Library
The Shubnikov-de Haas Effect in N-Type Indium Antimonide (open access)

The Shubnikov-de Haas Effect in N-Type Indium Antimonide

The Shubnikov-de Haas effect is an oscillation in the electrical resistivity or conductivity of a metal, semimetal, or semiconductor as a function of changing magnetic field which occurs at low temperatures. The effect is caused by the quantization of the momentum and energy of the charge carriers by the magnetic field. Since the nature of the oscillation depends strongly on the energy band structure of the material in which it is measured, the effect could be quite useful as an investigative tool. Its usefulness has been limited, however, by the uncertainty as to the functional form of the relationship between the measured oscillations and the parameters characterizing the material. One purpose of the present study is to extend the usefulness of the Shubnikov-de Haas effect by experimentally determining the functional form appropriate for a material such as n-type indium antimonide. The second purpose of the study is to determine values for the parameters which characterize the band structure of indium antimonide. The curve fitting procedure is found to be a powerful tool for investigating band structure. All computer programs used in processing the data, fitting the data, and comparing the results with the Kane model are given.
Date: August 1975
Creator: Stephens, Anthony Earl
System: The UNT Digital Library
L X-Ray Production in the Rare Earths by 0.33-2.66-MeV/amu Carbon- and 0.50-2.25-MeV/amu Oxygen-Ion Bombardment (open access)

L X-Ray Production in the Rare Earths by 0.33-2.66-MeV/amu Carbon- and 0.50-2.25-MeV/amu Oxygen-Ion Bombardment

Experimentally measured L-shell x-ray production cross sections are presented for 8-36-MeV oxygen-ion bombardment of Ce, Pr, Sm, Eu, Dy, and Ho; for 4-32-MeV carbon-ion bombardment of La and Yb; for 6-32-MeV carbon-ion bombardment of Pr, Nd, Sm, and Dy; and for ll-29-MeV carbon-ion bombardment of Ce, Eu, Gd, and Ho. Theoretical predictions via the plane wave Born approximation (PWBA) with corrections for increased binding of target electrons and Coulomb deflection of the incident projectile tend to underestimate the experimental data; and this underestimation tends to get worse at the low- and high-energy ends of the range of energies used in this work.
Date: August 1975
Creator: Pepper, George H.
System: The UNT Digital Library
Density Profile of a Quantized Vortex Line in Superfluid Helium-4 (open access)

Density Profile of a Quantized Vortex Line in Superfluid Helium-4

The density amplitude of an isolated quantum vortex line in superfluid 4He is calculated using a generalized Gross-Pitaevskii (G-P) equation. The generalized G-P equation for the order parameter extends the usual mean-field approach by replacing the interatomic potential in the ordinary G-P equation by a local, static T matrix, which takes correlations between the particles into account. The T matrix is a sum of ladder diagrams appearing in a diagrammatic expansion of the mean field term in an exact equation for the order parameter. It is an effective interaction which is much softer than the realistic interatomic Morse dipole-dipole potential from which it is calculated. A numerical solution of the generalized G-P equation is required since it is a nonlinear integro-differential equation with infinite limits. For the energy denominator in the T matrix equation, a free-particle spectrum and the observed phonon-roton spectrum are each used. For the fraction of particles in the zero-momentum state (Bose-Einstein dondensate) which enters the equation, both a theoretical value of 0.1 and an experimental value of 0.024 are used. The chemical potential is adjusted so that the density as a function of distance from the vortex core approaches the bulk density asymptotically. Solutions of the …
Date: May 1975
Creator: Harper, John Howard
System: The UNT Digital Library
Effects of Discharge Tube Geometry on Plasma Ion Oscillations (open access)

Effects of Discharge Tube Geometry on Plasma Ion Oscillations

This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.
Date: May 1975
Creator: Simmons, David Warren
System: The UNT Digital Library
K-Shell Ionization Cross Sections For Elements Se To Pd: 0.4 To 2.0 MeV (open access)

K-Shell Ionization Cross Sections For Elements Se To Pd: 0.4 To 2.0 MeV

K-Shell ionization cross section for protons over the energy range of 0.4 to 2.0 MeV have been measured on thin targets of the elements Se, Br, Rb, Sr, Y, Mo and Pd. Total x-ray and ionization cross sections for the K-shell are reported. The experimental values of the ionization cross sections are compared to the non-relativistic plane-wave Born approximation, the binary-encounter approximation, the constrained binary-encounter approximation, and the plane-wave Born approximation with corrections for Coulomb-deflection and binding energy effects.
Date: December 1974
Creator: Criswell, Tommy L.
System: The UNT Digital Library
The Role of Defects in the Quantum Size Effect (open access)

The Role of Defects in the Quantum Size Effect

This investigation is a theoretical study of the influence of defects of finite volume on the electrical conductivity in the quantum size effect regime. Correction terms to existing equations are derived, and a physical explanation of the results is given. Many macroscopic properties of films exhibit an oscillatory dependence on thickness when the thickness is comparable to the de Broglie wavelength of an electron at the Fermi surface. This behavior is called the quantum size effect. In very thin films, scattering from surfaces, phonons, and crystal defects plays an increasingly important role. In this investigation the influence of scattering centers (defects) in semimetal films on the electrical conductivity is explored by extending existing work to include scattering centers of finite range. The purpose of this study is to determine the overall change in the conductivity and the alteration of the amplitude of the oscillations. The Boltzmann transport equation is the starting point for the calculation. An equation for the vector mean free path is derived, and a solution is obtained by the iterative process. The relaxation approximation need not be made since the vector mean free path is determined. The sample is a thin slab that is infinite in two …
Date: December 1974
Creator: Malone, Farris D.
System: The UNT Digital Library
Microwave Line Widths of the Asymmetric Top Formic Acid Molecule (open access)

Microwave Line Widths of the Asymmetric Top Formic Acid Molecule

This work consisted of an experimental investigation of the formic acid (HCOOH) molecule's rotational spectrum. Measurements of line widths were obtained for J = 5, 12, 13, 19, and 20 for a pressure range from 1 to 10 microns. A linear behavior between Av and p was observed as predicted by theory. The line width parameter Avp was observed to depend on the quantum number J. Hard sphere collision diameters b1 were calculated using the obtained AvP values. These deduced hard sphere values were found to be larger than the physical size of the molecule. This result was found to be in general agreement with other investigation in which long range forces (dipole-dipole) dominate.
Date: August 1974
Creator: Maynard, Wayne R.
System: The UNT Digital Library
Proton-Induced L-shell X-Rays of Pr, Sm, Eu, Gd, and Dy (open access)

Proton-Induced L-shell X-Rays of Pr, Sm, Eu, Gd, and Dy

Characteristic L-shell x rays of the five rare earths Pr, Sm, Eu, Gd, and Dy were studied in this work. The x rays were produced by ionization from 0.3 to 2.0 MeV protons from the 2.0 MV Van de Graaff at North Texas State University. Total L-shell ionization and x-ray production cross sections were measured for Sm and compared to the BEA, CBEA and PWBA theories. Total L-shell ionization cross sections were measured for Pr, Eu, Gd, and Dy and compared to the BEA, CBEA, and PWBA. The CBEA and PWBA fit the samarium data well for both ionization and x-ray production cross sections. The BEA was generally 40 per cent lower than the data. The CBEA and the PWBA also fit the ionization cross section data for Pr, Eu, Gd and Dy, while the BEA was generally 40 per cent lower than the data.
Date: August 1974
Creator: Abrath, Frederick G.
System: The UNT Digital Library
A Theoretical Investigation of Bound Roton Pairs in Superfluid Helium-4 (open access)

A Theoretical Investigation of Bound Roton Pairs in Superfluid Helium-4

The Bogoliubov theory of excitations in superfluid helium is used to study collective modes at zero temperature. A repulsive delta function shell potential is used in the quasiparticle excitation energy spectrum to fit the observed elementary excitation spectrum, except in the plateau region. The linearized equation of motion method is used to obtain the secular equation for a collective mode consisting of a linear combination of one and two free quasiparticles of zero total momentum. It is shown that in this case for high-lying collective modes, vertices involving three quasiparticles cancel, and only vertices involving four quasiparticles are important. A decomposition into various angular momentum states is then made. Bound roton pairs in the angular momentum D-state observed in light-scattering experiments exist only for an attractive coupling between helium atoms in this oversimplified model. Thus, the interaction between particles can be reinterpreted as a phenomenological attractive coupling between quasiparticles, in order to explain the Raman scattering from bound roton pairs in superfluid helium.
Date: August 1974
Creator: Cheng, Shih-ta
System: The UNT Digital Library
A Calculation of the Excitation Spectrum of Superfluid Helium-4 (open access)

A Calculation of the Excitation Spectrum of Superfluid Helium-4

The Hartree-Fock-Bogoliubov theory of homogeneous boson systems at finite temperatures is rederived using, a free energy variational principle. It is shown that a t-matrix naturally emerges in the theory. Phenomenological modifications are made (1) to remove the energy gap at zero momentum, and (2) to eliminate the Hartree-Fock-like terms, which dress the kinetic energy of the particle. A numerical calculation of the energy spectrum is made over a temperature range of 0.00 to 3.14 K using the Morse dipole-dipole-2 potential and the Frost-Musulin potential. The energy spectrum of the elementary excitations is calculated self-consistently. It has a phonon behavior at low momentum and a roton behavior at higher momentum, so it is in qualitative agreement with the observed energy spectrum of liquid He II. However, the temperature dependence of the spectrum is incorrectly given. At the observed density of 0.0219 atoms A-3, the depletion of the zero-momentum state at zero temperature is 40.5% for the Morse dipole-dipole-2potential, and 43.2% for the Frost- Musulin potential. The depletion increases gradually until at 3.14 K the zero momentum density becomes zero discontinuously, which indicates a transition to the ideal Bose gas.
Date: May 1974
Creator: Goble, Gerald W.
System: The UNT Digital Library