29 Matching Results

Results open in a new window/tab.

Synthesis and Photochemical Studies of Wide-Band Capturing Sensitizers Capable of Light Energy Harvesting (open access)

Synthesis and Photochemical Studies of Wide-Band Capturing Sensitizers Capable of Light Energy Harvesting

Artificial photosynthesis, for the purpose of converting solar energy into fuel, is one of the most viable and promising alternative approaches to solve the current global energy and environmental issues. Among the challenges faced in artificial photosynthesis is in building photosystems that can effectively and efficiently perform light absorption and charge separation in broad-band capturing donor-acceptor systems. While having a broad-band capturing antenna system that can harness incoming photons is crucial, another equally important task is to successfully couple the antenna system, while maintaining its optical properties, to an energy or electron acceptor which serves as the reaction center for the generation of charged species of useful potential energy. The stored potential energy will be utilized in different applications such as driving electrons in solar cells or in splitting water for the generation of fuel. Hence, the particular endeavor of this thesis is to study and synthesize molecular/supramolecular systems with wide-band capturing capabilities to generate long-lived charge separated states. The sensitizer used in building these systems in the present study is 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, for short, BF2 chelated Azaboron dipyrromenthene or AzaBODIPY. A handful of novel donor-acceptor systems based on AzaBODIPY have been successfully designed, synthesized and their photochemistry have been investigated …
Date: August 2016
Creator: Bandi, Venu Gopal
System: The UNT Digital Library
Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis (open access)

Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis

The ability of gold(I) to activate many types of unsaturated bonds toward nucleophilic attack was not widely recognized until the early 2000s. One major challenge in gold catalysis is the control over regioselectivity when there are two or more possible products as a result of complicated mechanistic pathways. It is well know that the choice of ligand can have dramatic effects on which pathway is being followed but very rarely are the reasons for this selectivity understood. The synthesis of new acyclic diaminocarbenes was developed and a study of the ligand effects on the regioselectivity of a gold-catalyzed domino enyne cyclization hydroarylation reaction and a Nazarov cyclization was undertaken. New chiral acyclic diaminocarbenes were also developed and tested along side new C3-symmetric phosphite ligands in an asymmetric intramolecular hydroamination of allenes. Structure activity correlations were developed for the potential use in further rational ligand design. The synthesis of 6a,7-dihydro-5-amino-dibenzo[c,g]chromene derivatives via a gold-catalyzed domino reaction of alkynylbenzaldehydes in the presence of secondary amines was developed. These were sent to be screened for biological activity.
Date: May 2016
Creator: Ruch, Aaron A.
System: The UNT Digital Library
Design, Synthesis and Study of Supramolecular Donor – Acceptor Systems Mimicking Natural Photosynthesis Processes (open access)

Design, Synthesis and Study of Supramolecular Donor – Acceptor Systems Mimicking Natural Photosynthesis Processes

This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor – acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature’s approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is …
Date: December 2015
Creator: KC, Chandra Bikram
System: The UNT Digital Library
Self-assembly Polymeric Nanoparticles Composed of Polymers Crosslinked with Transition Metals for Use in Drug Delivery (open access)

Self-assembly Polymeric Nanoparticles Composed of Polymers Crosslinked with Transition Metals for Use in Drug Delivery

A major drawback of chemotherapy is the lack of selectively leading to damage in healthy tissue, which results in severe acute side effects to cancer patients. The use of nanoparticles as a drug delivery system has emerged as novel strategy to overcome the barriers of immunogenic response, controlled release of therapeutic, and targeting the toxicity only to cancerous cells. In this study, polymeric nanoparticles composed of transition metals and particles derived from natural biopolymers have been generated via self-assembly. For example, nanoparticles composed of cobalt crosslinked with albumin (Co-alb NPs) via Co-amine coordination chemistry of lysine residue were syntheisized in various sizes. The method to generate Co-alb NPs involves no thermal heat, organic solvent or any surfactants, which is ideal for the production of large amounts in a timely manner. The Co-alb NPs displayed exceptional stability under physiological conditions (pH 7.4) for several days with minor changes in size; however degradation could be triggered by reductant (reduced glutathione (GSH), 10 mM) with complete disappearance of particles in less than 2 hour. Numerous therapeutics that are highly effective toward cancer cells have been developed; however, many cannot be administered to patients due to poor solubility in water and pH dependent properties. …
Date: December 2015
Creator: Nguyen, Duong Thuy
System: The UNT Digital Library
Molecules and Materials for Excitonic Solar Cells Using P-type Metal Oxide Semiconductors (open access)

Molecules and Materials for Excitonic Solar Cells Using P-type Metal Oxide Semiconductors

This dissertation has two intersecting foci; firstly, the discovery of a new methodology for the growth of high surface area cuprous oxide (Cu2O) substrates. Secondly, the synthesis and characterization of electron-accepting molecules, and their incorporation into excitonic solar cells (XSCs) using the Cu2O substrates as electrodes. Increasing the surface area of the semiconductor creates more locations for charge transfer to occur thus increasing the overall efficiency of the device. Zinc oxide (ZnO) has been widely studied, and can be easily grown into many different films with high surface area morphologies. The ZnO films serve as sacrificial templates that allow us to electrochemically grow new semiconductors with the same high surface area morphologies but composed of a material having more desirable electronic properties. A polymer can be applied over the surface of the ZnO nanorod films before etching the ZnO with a weak acid, thereby leaving a polymer nanopore membrane. Cathodic electrodeposition of Cu2O into the membrane nanopores gives Cu2O nanorods. Electron-accepting dyes are designed with tethers that allow for direct attachment to metal oxide semiconductors. After soaking, the semiconductor is coated with a monolayer of a dye and then the coated semiconductor films were made into various dye-sensitized solar cells …
Date: August 2015
Creator: Haynes, Keith M.
System: The UNT Digital Library
Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications (open access)

Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications

A novel route for the synthesis of the polycyclic aromatic hydrocarbon peropyrene (Pp) is reported along with the efforts to synthesize derivatives of Pp, 2,2′- and 5,5′-linked tetracene dimers as candidates for study as singlet fission materials in photovoltaic devices. Peropyrene was synthesized by the McMurry coupling conditions from phenalenone and low-valent titanium species. The crystal structure of Pp is formed by π-stacked molecular pairs in a herringbone arrangement. The direct functionalization of Pp was studied, and several indirect methods for the functionalization of Pp via phenalenone derivatives are reported. Nucleophilicly dependent, regioselective Michael addition pathways for phenalenone are described. Phenalenone forms a nucleophilic complex with bispinacolatodiboron and yields chiral 3,3′-linked phenalenone dimers and a bicyclo[3.2.1]octane derivative product of an unusual 3,4 addition. An active complex product of phenalenone and (dimethylphenylsilyl)boronic acid pinacolic ester forms Pp directly. The synthesis of 2,2′- and 5,5′-linked tetracene dimers led to the study of the reduction of 1-arylprop-2-yn-1-ol derivatives via TFA-catalyzed hydride transfer from triethylsilane. Substrates with terminal and TMS-protected alkynes showed silane exchange upon reduction. A TMS-protected, terminal alkyne became triethylsilyl-protected by about 50% whereas only triethylsilyl-protected, terminal alkyne was observed from the reduction of an unprotected, terminal alkyne. A new conformational polymorph …
Date: May 2015
Creator: Rodríguez López, Marco Tulio
System: The UNT Digital Library
Kinetic Studies on C‐h Bond Activation in the Reaction of Triosmium Clusters with Diphosphine and Amidine Ligands (open access)

Kinetic Studies on C‐h Bond Activation in the Reaction of Triosmium Clusters with Diphosphine and Amidine Ligands

The reaction of 1-(diphenylphosphino)-2-(diphenylphosphito)benzene (PP*) and Os3(CO)10(ACN) has been investigated. A combined experimental and computational study on the isomerization of 1,2-Os3(CO)10[μ-1,2-Ph2P(C6H4)P(OPh)2] (A) and 1,1-Os3(CO)10[μ-1,2-Ph2P(C6H4)P(OPh)2] (B) and reversible ortho-metalation exhibited by the triosmium cluster B are reported. The subsequent conversion of cluster B to the hydrido cluster HOs3(CO)9[μ-1,2-PhP(C6H4-η1)C6H4P(OPh)2] (E) and the benzyne-substituted cluster HOs3(CO)8(µ3-C6H4)[μ-1,2-PhP(C6H4)P(OPh)2] (N) has been established. All of these new clusters have been isolated and fully characterized in solution by IR and NMR spectroscopy; in addition, X-ray diffraction analyses have been performed on the clusters A, B, J, and N. The ortho-metalation reaction that gives cluster E is shown to be reversible, and the mechanism has been probed using selectively deuterated PP* isotopomers. Kinetic and thermodynamic isotope data, in conjunction with DFT calculations, are presented that support the existence of an intermediate unsaturated cluster in the ortho-metalation reaction. Due to interest in the coordination chemistry of formamidines, the non-symmetric amidine ligands PhNC(Me)NHPri, PhNC(Et)NHPri, and (2,4,6-Me3C6H2)NC(Me)NHPri, have been synthesized, and their reaction with Os3(CO)10(MeCN)2 has been investigated. Of the twelve new clusters prepared in section, seven have been structurally characterized by X-ray crystallography.
Date: December 2014
Creator: Yang, Li
System: The UNT Digital Library
Synthesis of Novel Organic Chromophores and Their Characterization (open access)

Synthesis of Novel Organic Chromophores and Their Characterization

Nonlinear organic liquids that exhibit two-photon absorption (TPA) function as good optical limiters for sensor protection from laser pulses. L34 (4-butyl-4'-propyl-diphenylethyne) is a liquid organic compound exhibiting nonlinear optical absorption. A thiol- derivatized analog of L34 (“thiol-L34”) was prepared to bind the molecules to the surface of gold nanoparticles. Surface binding is necessary to investigate synergy between nonlinear optical absorption of gold nanoparticles and thiol-L34. Thiol-L34 was prepared in a six-step organic synthesis starting from 3-(4-bromophenyl) propionic acid. Au nanoparticles with <15 nm diameter have been prepared and sensitized with the thiol-L34 compound for assessment of their nonlinear optical behavior. Diazolylmethenes a class of metal-coordinating dyes that are similar to dipyrrins with some substitutions of nitrogen atoms in place of carbon atoms. Modification in the framework of dipyrrinoid dyes via this replacement of nitrogen for carbon atoms may lead to compounds that serve as effective agents for bioimaging and/or photodynamic therapy. Several routes to the synthesis of di-(1,2,3)-triazolylmethenes, di-(1,2,4)-triazolylmethenes, and ditetrazolylmethenes are presented.
Date: December 2014
Creator: Pokharel, Sundari D.
System: The UNT Digital Library
Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells (open access)

Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells

Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.
Date: August 2014
Creator: Berhe, Seare Ahferom
System: The UNT Digital Library
Synthesis of Tethering Group on Borylazadipyrromethene Dyes to Apply to Photogalvanic Dye-sensitized Solar Cells (open access)

Synthesis of Tethering Group on Borylazadipyrromethene Dyes to Apply to Photogalvanic Dye-sensitized Solar Cells

This is my thesis research on the preparation of borylazadipyrromethene (azaBODIPY) dyes bearing an anchoring group, such as a carboxylic acid group, at the β-pyrrolic position of the azadipyrromethene scaffold. Carboxylate groups form covalent bonds to oxide semiconductors such as TiO2 (n-type) or Cu2O (p-type) in dye-sensitized solar cells (DSCs) or photogalvanic dye-sensitized solar cells (P-DSCs). Oxide-binding azaBODIPY dyes can be used to investigate the rate and mechanism of electron injection from the dyes to the semiconductors. Two different types of azaBODIPY (difluoroboryl and dialkynylboryl) were prepared by following previously developed methods. To convert difluoroborylazaBODIPY to the final dyes having a carboxylic acid in the β-pyrrolic position, several distinct synthetic routes were designed, adopting various reactions, such as halogenation, Sonogashira coupling, Knoevenagel condensation, Grignard reagents, Vilsmeir-Haack, and Steglich esterification. Some of these reactions were successful, but the overall synthesis to the targeted final molecule couldn’t be accomplished. Even though further studies on the synthesis of oxide-binding azaBODIPYs are needed, at least my thesis research suggests what reactions can be implemented to complete this synthesis in the future. Proton NMR (nuclear magnetic resonance) and carbon NMR were commonly used to confirm the synthesized compounds, and sometimes crystallographic information was obtained by …
Date: August 2014
Creator: Park, Eunsol
System: The UNT Digital Library
Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex (open access)

Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

The reaction of 2-[(diphenylphosphino)methyl]-6-methylpyridine (PN) with Os3(CO)12-n(MeCN)n [where n = 0 (1), 1 (2), 2 (3)] has been investigated. Os3(CO)12 reacts with PN in the presence of Me3NO to afford the clusters Os3(CO)11(1-PN) (4) and 1,2-Os3(CO)10(1-PN)2 (5). X-ray diffraction analyses confirm the equatorial coordination of the phosphine(s) in 4 and 5, with the two phosphines in the latter cluster exhibiting a 1,2-trans orientation about the Os-Os vector that contains the two ligands. Treatment of the MeCN-substituted cluster Os3(CO)11(MeCN) and PN (1:1 ratio) in CH2Cl2 gives clusters 4 and 5, in addition to HOs3(η1-Cl)(CO)10(1-PN) (6) as a result of competitive activation of the reaction solvent. Cluster 6 contains 48e- and the diffraction structure reveals the presence of axial chloride and equatorial phosphine ligands which are located on adjacent osmium atoms. The bridging hydride ligand in 6 spans the Cl,P-substituted Os-Os vector. The reaction of Os3(CO)10(MeCN)2 with PN furnishes 5, 6, and 1,1-Os3(CO)10(2-PN) (7) in yields that are dependent on the reagent stoichiometry and reaction solvent. The solid-state structure of 7 confirms the chelation of the PN ligand to a single osmium atom via the pyridine and phosphine moieties at axial and equatorial sites, respectively. The bonding in 7 relative to other …
Date: August 2013
Creator: Lin, Chen-Hao
System: The UNT Digital Library
A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices (open access)

A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

The characterization of 2,3,6,7,10,11-hexabromotriphenylene, Br6TP, is presented toward its potential use as an n-type organic semiconductor and metal-free room temperature phosphor. The crystal structure shows both anisotropic two-dimensional BrBr interactions and inter-layer ?-stacking interactions. Photophysical characteristics were evaluated using solid-state photoluminescence and diffuse reflectance spectroscopies, revealing significantly red-shifted excitations in the visible region for the yellow solid material (compared to ultraviolet absorption bands for the colorless dilute solutions). Correlation of spectral, electrochemical, and computational data suggest the presence of an n-type semiconducting behavior due to the electron-poor aromatic ring. The material shows excellent thermal stability as demonstrated by thermogravimetric analysis and infrared spectra of a thin film deposited by thermal evaporation. The potential for Br6TP and its analogues toward use in several types of photonic and electronic devices is discussed.
Date: December 2012
Creator: Halbert, Jason Paul
System: The UNT Digital Library
Synthesis and Characterization of Two and Three Coordinate Gold (I) Conjugated and Rigid Metallodendrimers (open access)

Synthesis and Characterization of Two and Three Coordinate Gold (I) Conjugated and Rigid Metallodendrimers

This dissertation is a study of two major topics that involve synthetic strategies for new classes of phosphorescent gold(I)-based metallodendrimers. The phosphorescence of organic and inorganic luminophores originates from spin-orbit coupling owing to internal or external heavy atom effects as well as metal-centered emissions. Previous work in the Omary group entailed systematically designed small molecules, metallopolymers, and unconjugated metallodendrimers that contain d10 and d8 metals, whereas this dissertation aims in part to expand such strategies to the conjugated metallodendrimer regime. In one approach novel synthetic strategies were used to make first-generation phenyl acetylene dendrimers and phosphine derivatives thereof. The phosphine dendrimers are made by tethering one of the phosphines to an unsaturated dendrimer, as such phosphine dendrimers are better chromophores and luminophores due to their structural rigidity and extended conjugation. In another approach, 2- and 3-coordinate Au(I) dendritic complexes are synthesized from these phosphine dendrimers. This study is further extended to study metallodendritic complexes with different cores, for example triphenylene-based metallodendritic complexes with six acetylene branches. The physical properties of the metallodendrimers can be modulated upon proceeding to further dendrimer generations or by using solubilizing groups on the peripheral phosphines, thus allowing better processability for thin-film fabrication as required for …
Date: August 2012
Creator: Kaipa, Ushasree
System: The UNT Digital Library
Examination and Development of the Correlation Consistent Composite Approach (open access)

Examination and Development of the Correlation Consistent Composite Approach

The primary focus of this dissertation is the advancement of the correlation consistent composite approach (ccCA) methodology from its original formulation to the current implementation. Although for large main group test sets which contained both first- (Li-Ne) and second-row (Na-Ar) species ccCA produced chemical accuracy (generally estimated as a deviation of ~1 kcal mol-1 from reliable experiment), the second-row species were smaller in molecular size in comparison to their corresponding first-row species. Previous theoretical work has shown that the accuracy for theoretical calculations involving second-row species (specifically sulfur-containing species) are more basis set dependent than first-row species. Therefore, an analysis of the accuracy of ccCA for sulfur-containing species is warranted. The ccCA methodology is used to evaluate both enthalpies of formation and bond dissociation energies of sulfur-containing species as well as examine isomerization energies for three sets of sulfur-containing isomers. During the testing of ccCA for sulfur-containing species two observations were made which led to further investigations. First, there is no agreement between different theoretical methodologies on the lowest energetic isomer between SNO and NSO. In fact, G3 and G3B3 which differ only by the geometry of the single-point calculations do not agree on the lowest isomer. For this reason, …
Date: December 2010
Creator: Williams, T. Gavin
System: The UNT Digital Library
Syntheses, X-ray Diffraction Structures, and Kinetics on New Formamidinate-Substituted Triosmium Clusters (open access)

Syntheses, X-ray Diffraction Structures, and Kinetics on New Formamidinate-Substituted Triosmium Clusters

The reaction between the formamidine ligand PriN=CHNHPri and the activated cluster Os3(CO)10(MeCN)2 has been studied. A rapid reaction is observed at room temperature, yielding the hydride clusters HOs3(CO)9[&#956;-OCNPriC(H)NPri] and HOs3(CO)10[&#956;-NPriC(H)NPri] as the principal products. The spectroscopic data and X-ray diffraction structures of those formamidinate-substituted clusters will be present. The thermal reactivity of the clusters has been investigated, with the face-capped cluster HOs3(CO)9[&#956;-NPriC(H)NPri] found as the sole observable product. The relationship between these three clusters has been established by kinetic studies, the results of which will be discussed.
Date: December 2010
Creator: Yang, Li
System: The UNT Digital Library
Synthetic, Mechanistic, and Structural Studies of Polynuclear Metal Clusters and Hydrazido-Substituted Tantalum(V) Compounds (open access)

Synthetic, Mechanistic, and Structural Studies of Polynuclear Metal Clusters and Hydrazido-Substituted Tantalum(V) Compounds

A combined experimental and computational study on the reversible ortho-metalation exhibited by the triosmium cluster Os3(CO)10(dppm) (dppm = 1,1-bis(diphenylphosphino)methane is reported. The conversion of nonacarbonyl cluster HOs3(CO)9[&#61549;-PhP(C6H4)CH2PPh2] to Os3(CO)10(dppm) is independent of added CO and exhibits a significant inverse equilibrium isotope effect (EIE). Reductive coupling of the C-H bond in HOs3(CO)9[&#61549;-PhP(C6H4)CH2PPh2] leads to the formation of agostic C-H and two distinct aryl-&#960; species prior to the rate-limiting formation of the unsaturated cluster Os3(CO)9(dppm). Heating the unsaturated dimer H2Re2(CO)8 with Cp*Rh(CO)2 (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene) at elevated temperature affords the new trimetallic clusters H2RhRe2Cp*(CO)9 and HRh2ReCp*2(CO)6, and the spiked-triangular cluster HRhRe3Cp*(CO)14. H2Re2(CO)8 reacts with Cp*2Rh2(CO)2 under identical conditions to furnish H2RhRe2Cp*(CO)9 and HRh2ReCp*2(CO)6 as the principal products, in addition to the tetrahedral cluster H2Rh2Re2Cp*2(CO)8. H2RhRe2Cp*(CO)9 undergoes facile fragmentation in the presence of halogenated solvents and the thiols RSH (where R = H, C6H4Me-p) to afford the structurally characterized products Cp*Rh(&#61549;-Cl)3Re(CO)3, S2Rh3Cp*(CO)4, Cp*Rh(&#61549;-Cl)(&#61549;-SC6H4Me-p)2Re(CO)3, and Cp*Rh(&#61549;-SC6H4Me-p)3Re(CO)3. The new hydrazido-substituted compounds TaCl(NMe2)3[N(TMS)NMe2] (TMS = tetramethylsilyl) and Ta(NMe2)4[N(TMS)NMe2] have been synthesized and their structures established by X-ray crystallography. The latter product represents the first structurally characterized octahedral tantalum(V) complex containing a single hydrazido(I) ligand in an all-nitrogen coordinated environment about the metal center. The fluxional properties …
Date: December 2010
Creator: Huang, Shih-Huang
System: The UNT Digital Library
Nanoparticles Engineered to Bind Serum Albumin: Microwave Assisted Synthesis, Characterization, and Functionalization of Fluorescently-Labeled, Acrylate-Based, Polymer Nanoparticles (open access)

Nanoparticles Engineered to Bind Serum Albumin: Microwave Assisted Synthesis, Characterization, and Functionalization of Fluorescently-Labeled, Acrylate-Based, Polymer Nanoparticles

The potential use of polymeric, functionalized nanoparticles (NPs) as drug delivery vectors was explored. Covalent conjugation of albumin to the surface of NPs via maleimide chemistry proved problematic. However, microwave assisted synthesis of NPs was not only time efficient, but enabled the exploration of size control by changing the following parameters: temperature, microwave power, reaction time, initiator concentration, and percentage of monomer used. About 1.5 g of fluorescently-labeled, carboxylic acid-functionalized NPs (100 nm diameter) were synthesized for a total cost of less than $1. Future work will address further functionalization of the NPs for the coupling of albumin (or other targeted proteins), and tests for in vivo biodistribution.
Date: August 2010
Creator: Hinojosa, Barbara R.
System: The UNT Digital Library
Synthesis and Screening of a Combinatorial Peptide Library for Ligands to Target Transferrin: Miniaturizing the Library (open access)

Synthesis and Screening of a Combinatorial Peptide Library for Ligands to Target Transferrin: Miniaturizing the Library

Combinatorial libraries are used in the search for ligands that bind to target proteins. Fmoc solid-phase peptide synthesis is routinely used to generate such libraries. Microwave-assisted peptide synthesis was employed here to decrease reaction times by 80-90%. Two One-Bead-One-Compound combinatorial libraries were synthesized on 130μm beads (one containing 750 members and the other 16, 807). The use of smaller solid supports would have many important practical advantages including; increased library diversity per unit mass, smaller quantities of library needed to generate hits, and screening could be conducted by using a standard flow cytometer. To this end, a miniaturized peptide library was synthesized on 20 μm beads to demonstrate proof of principle. A small sample from the 16,807-member library was screened against transferrin-AlexaFluro 647, a protein responsible for iron transport in vivo. A number of hits were identified and sequenced using techniques coupling nanomanipulation with nanoelectrospray mass spectrometry.
Date: August 2010
Creator: Brown, Jennifer Marie
System: The UNT Digital Library
ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds. (open access)

ANTI Preference of the Pyramidalized Radical Center to the Two Fluorines in Difluoro Cyclic Compounds.

An extensive study of disubstituted cycloalkanes like CnH2n where n=3,4,5 and 6 using DFT((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations is presented focusing on the effect of pyramidalization of the radical center. A potential energy surface (PES) analysis shows that the radical prefers to pyramidalize anti to the two cis fluorines in the disubstituted cycloalkanes. The degree of pyramidalization for 1,2-difluorocyclopropyl radical is 43.9o away from the cis fluorines whereas for 1,3-difluorocyclobutyl radical, 1,3-difluorocyclopentyl radical and 1,3-difluorocyclohexyl radical is 3.8o, 5.4o and 14.5o respectively away from the cis fluorines. The importance of this pyramidality effect in these compounds is discussed in context with the carbon-hydrogen bond dissociation energies (BDE's) because the preference of the radical centers to pyramidalize anti to the fluorines affects the bond dissociation energy. Importance of steric effect and unfavorable electronic interactions have been extensively explored in planar permethylated cyclobutadiene (Me4CBD) and cyclooctatetraene (Me8COT) using ((U)B3LYP/6-31G(d) and 6-311+G(2df,2p)) calculations. It is thought that steric interactions dominate electronic interactions in Me8COT, while this works opposite in case of Me4CBT. Instead, in Me4CBD the number of unfavorable electronic interactions between π bonds and out-of-plane hydrogens plays the dominant role in determining the relative energies. Interactions between the π bonds of CBD and …
Date: May 2008
Creator: Tanna, Jigisha
System: The UNT Digital Library
Synthesis, characterization and properties of rigid macromolecules with extended conjugation, using palladium-catalyzed alkynylated polyhaloarenes. (open access)

Synthesis, characterization and properties of rigid macromolecules with extended conjugation, using palladium-catalyzed alkynylated polyhaloarenes.

A synthetic approach to macromolecules of acetylenic arrays and luminescent properties is proposed and the execution of initial steps is described. Palladium-catalyzed coupling of 1,3,5-triiodobenzene with trimethylsilylbuta-1,3-diyne, trimethylsilylocta-1,3,5,7-tetrayne, and trimethylsilylhexadeca-1,3,5,7,9,11,13,15-octayne to yield the new 1,3,5-tris(trimethylsilylbuta-1,3-diynyl)benzene and the proposed 1,3,5-tris(8-(trimethylsilyl)octa-1,3,5,7-tetraynyl)benzene and 1,3,5-tris(trimethylsilyl)hexadeca-1,3,5,7,9,11,13,15-octaynyl)benzene respectively. The proposed three-coordinate Au (I) complexed macromolecules will be derived from the metallation of the aforementioned alkynylated arenes.
Date: December 2007
Creator: Akintomide, Temiloluwa
System: The UNT Digital Library
Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters. (open access)

Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters.

The kinetics for the bridge-to-chelate isomerization of the dppe ligand in H4Ru4(CO)10(dppe) have been investigated by UV-vis and NMR spectroscopies over the temperature range of 308-328 K. The isomerization of the ligand-bridged cluster 1,2-H4Ru4(CO)10(dppe) was found to be reversible by 31P NMR spectroscopy, affording a Keq = 15.7 at 323 K in favor of the chelating dppe isomer. The forward (k1) and reverse (k-1) first-order rate constants for the reaction have been measured in different solvents and in the presence of ligand trapping agents (CO and PPh3). On the basis of the activation parameters and reaction rates that are unaffected by added CO and PPh3, a sequence involving the nondissociative migration of a phosphine moiety and two CO groups between basal ruthenium centers is proposed and discussed. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligands dppbz proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(dppbz) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C4H4]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(dppbz) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(dppbz), molecular structure of both the isomers have been determined by X-ray crystallography. The kinetics for the ligand isomerization has been investigated by UV-vis …
Date: August 2007
Creator: Kandala, Srikanth
System: The UNT Digital Library

Synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers and reaction chemistry of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at triosmium carbonyl clusters.

Access: Use of this item is restricted to the UNT Community
Quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers have been synthesized as possible specific metal host systems. The synthesis and characterization of quinoxaline-functionalized, cage-annulated oxa- and thiacrown ethers have been described. The characterization of these host systems have been fully achieved in solution by using various techniques such as IR, 1H NMR, and 13C NMR spectroscopic methods, high-resolution mass spectrometry (HRMS), elemental microanalysis, and X-ray crystallographic analysis in case of one quinoxaline-functionalized, cage-annulated oxacrown ether compound. The synthesis of the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) is described. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligand bmi proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(bmi) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)N(tolyl-p)C(O)]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(bmi) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(bmi), whose molecular structure has been determined by X-ray crystallography. The kinetics for the ligand isomerization have been investigated by UV-vis and 1H NMR spectroscopy in toluene solution over the temperature range of 318-348 K. On the basis of kinetic data conducted in the presence of added CO and the Eyring activation parameters, a non-dissociative phosphine migration across one of the Os-Os bonds is proposed. Orthometalation of …
Date: December 2006
Creator: Poola, Bhaskar
System: The UNT Digital Library

Studies of spin alignment in ferrocenylsilane compounds and in regiospecific oxidation reactions of 1,9-dimethylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione.

Access: Use of this item is restricted to the UNT Community
Part I. The syntheses of a series of stable ferrocenylsilane compounds and their corresponding polyradical cations are reported. Electron spin properties of these molecules were investigated by cyclic voltammetry, ESR, and magnetic susceptibility measurements. All the compounds presented, showed significant electronic communication (>100 mV) between the redox centers by CV. Part II. Baeyer-Villiger oxidation of (1,9-dimethyl-PCU-8,11-dione) was performed using m-chloroperoxybenzoic acid in 1:2 molar ratios. The product obtained was the corresponding dilactone 113. The structure of the reaction products was established unequivocally via single crystal X-ray diffraction methods. The reaction of the 1,9-dimethyl-PCU-8,11-dione with 1:1 molar ratio of m-chloroperoxybenzoic acid produced again the dilactone 113, and not the expected monolactone 114. Ceric ammonium nitrate (CAN) promoted oxidation reaction of 1,9-dimethyl-PCU-8,11-dione afforded a mixture of dimethylated lactones, which indicated unique reaction mechanism pathways. These individual isomers, 115 and 116, have been isolated from these mixtures via column chromatography by using silica gel as adsorbent followed by fractional recrystallization of individual chromatography fractions. Structures of these pure products have been established unequivocally by application of single crystal X-ray crystallographic methods.
Date: August 2006
Creator: Atim, Silvia
System: The UNT Digital Library
Synthesis and Characterization of 2,3-Dichloropyrrolo[1,2-a]benzimidazol-1-one and Its Methylthiol Derivatives (open access)

Synthesis and Characterization of 2,3-Dichloropyrrolo[1,2-a]benzimidazol-1-one and Its Methylthiol Derivatives

Condensation of 2,3-dichloromaleic anhydride and o-phenylenediamine in refluxing toluene affords the three compounds 2,3-dichloro-N-o-C6H4(NH2)maleimide (1), N,N¢-o-C6H4-bis(2,3-dichloromaleimide) (2), and 2,3-dichloropyrrolo[1,2-a]benzimidazol-1-one (3), with compound 1 as the major product. Repeating the same reaction in the presence of added PTSA furnishes compound 3 as the major product. Treatment of 3 with methylthiol in the presence of pyridine affords monosulfide compounds 2-chloro-3-methylthiopyrrolo[1,2-a]benzimidazol-1-one (4) and and the disulfide derivatives 2,3-di(methylthio)pyrrolo[1,2-a]benzimidazol-1-one (5). The substitution of the first chlorine group in compound 3 occurs regioselectively at C-3 to produce compound 4, followed by replacement of the remaining chlorine group to furnish the disulfide compounds 5. The new compounds 1-5 have been isolated by column chromatography and characterized by IR, NMR, XRD, CV and etc.
Date: May 2006
Creator: Wu, Guanmin
System: The UNT Digital Library