Precession Electron Diffraction Assisted Characterization of Deformation in α and α+β Titanium Alloys (open access)

Precession Electron Diffraction Assisted Characterization of Deformation in α and α+β Titanium Alloys

Ultra-fine grained materials with sub-micrometer grain size exhibit superior mechanical properties when compared with conventional fine-grained material as well as coarse-grained materials. Severe plastic deformation (SPD) techniques have been shown to be an effective way to modify the microstructure in order to improve the mechanical properties of the material. Crystalline materials require dislocations to accommodate plastic strain gradients and maintain lattice continuity. The lattice curvature exists due to the net dislocation that left behind in material during deformation. The characterization of such defects is important to understand deformation accumulation and the resulting mechanical properties of such materials. However, traditional techniques are limited. For example, the spatial resolution of EBSD is insufficient to study materials processed via SPD, while high dislocation densities make interpretations difficult using conventional diffraction contrast techniques in the TEM. A new technique, precession electron diffraction (PED) has gained recognition in the TEM community to solve the local crystallography, including both phase and orientation, of nanocrystalline structures under quasi-kinematical conditions. With the assistant of precession electron diffraction coupled ASTARÔ, the structure evolution of equal channel angular pressing processed commercial pure titanium is studied; this technique is also extended to two-phase titanium alloy (Ti-5553) to investigate the existence of …
Date: August 2015
Creator: Liu, Yue
System: The UNT Digital Library
Thin Films As a Platform for Understanding the Conversion Mechanism of FeF2 Cathodes in Lithium-Ion Microbatteries (open access)

Thin Films As a Platform for Understanding the Conversion Mechanism of FeF2 Cathodes in Lithium-Ion Microbatteries

Conversion material electrodes such as FeF2 possess the potential to deliver transformative improvements in lithium ion battery performance because they permit a reversible change of more than one Li-ion per 3d metal cation. They outperform current state of the art intercalation cathodes such as LiCoO2, which have volumetric and gravimetric energy densities that are intrinsically limited by single electron transfer. Current studies focus on composite electrodes that are formed by mixing with carbon (FeF2-C), wherein the carbon is expected to act as a binder to support the matrix and facilitate electronic conduction. These binders complicate the understanding of the electrode-electrolyte interface (SEI) passivation layer growth, of Li agglomeration, of ion and electron transport, and of the basic phase transformation processes under electrochemical cycling. This research uses thin-films as a model platform for obtaining basic understanding to the structural and chemical foundations of the phase conversion processes. Thin film cathodes are free of the binders used in nanocomposite structures and may potentially provide direct basic insight to the evolution of the SEI passivation layer, electron and ion transport, and the electrochemical behavior of true complex phases. The present work consisted of three main tasks (1) Development of optimized processes to deposit …
Date: August 2015
Creator: Santos-Ortiz, Reinaldo
System: The UNT Digital Library
Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs. (open access)

Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs.

Widespread use of organic light emitting diodes (OLEDs) in solid state lighting and display technologies require efficiency and lifetime improvements, as well as cost reductions, inclusive of the transparent conducting oxide (TCO). Indium tin oxide (ITO) is the standard TCO anode in OLEDs, but indium is expensive and the Earth's reserve of this element is limited. Zinc oxide (ZnO) and its variants such as aluminum-doped ZnO (AZO) exhibit comparable electrical conductivity and transmissivity to ITO, and are of interest for TCO applications. However, the workfunction of ZnO and AZO is smaller compared to ITO. The smaller workfunction of AZO results in a higher hole injection barrier at the anode/organic interface, and methods of tuning its workfunction are required. This dissertation tested the hypothesis that workfunction tuning of AZO films could be achieved by surface modification with electronegative oxygen and fluorine plasmas, or, via use of nanoscale transition metal oxide layers (MoOx, VOx and WOx). Extensive UPS, XPS and optical spectroscopy studies indicate that O2 and CFx plasma treatment results in an electronegative surface, surface charge redistribution, and a surface dipole moment which reinforces the original surface dipole leading to workfunction increases. Donor-like gap states associated with partially occupied d-bands due …
Date: August 2016
Creator: Jha, Jitendra
System: The UNT Digital Library

Linking Enhanced Fatigue Life to Design by Modifying the Microstructure

Access: Use of this item is restricted to the UNT Community
Structural material fatigue is a leading cause of failure and has motivated fatigue-resistant design to eliminate risks to human lives. Intrinsic microstructural features alter fatigue deformation mechanisms so profoundly that, essentially, fatigue properties of structural materials become deviant. With this in mind, we initiated this project to investigate the microstructural effect on fatigue behavior of potential structural high entropy alloys. With a better understanding of the effect of microstructure features on fatigue properties, the ultimate goal was to engineer the microstructure to enhance the fatigue life of structural materials. The effects of two major deformation mechanisms presented here are twinning-induced fatigue crack retardation, and transformation-induced fatigue crack retardation. The fundamental principle of both mechanisms is to delay the fatigue crack propagation rate by altering the work hardening ability locally within the crack plastic zone. In ultrafine grained triplex Al0.3CoCrFeNi, nano-sized deformation twins were observed during cyclic loading in FCC matrix due to low stacking fault energy (SFE). The work-hardening ability of the material near the crack was sustained with the formation of twins according to Considere's criteria. Further, due to the ultrafine-grained (UFG) nature of the material, fatigue runout stress was enhanced. In a coarse-grained, dual-phase high entropy alloy, persistent …
Date: August 2019
Creator: Liu, Kaimiao
System: The UNT Digital Library