35 Matching Results

Results open in a new window/tab.

Modeling Transition Metal Catalysts for Small Molecule Activation and Functionalization (open access)

Modeling Transition Metal Catalysts for Small Molecule Activation and Functionalization

There is a high demand for the development of processes for the conversion of ubiquitous molecules into industrially useful commodities. Transition metal catalysts are often utilized for the activation and functionalization of small organic molecules due to their diverse nature and proven utility with a myriad of chemical transformations. The functionalization of methane (CH4) and dinitrogen (N2) to methanol (CH3OH) and ammonia (NH3) respectively is of particular interest; however, both methane and dinitrogen are essentially inert due to the inherit strength of their bonds. In this dissertation a series of computational studies is performed to better understand the fundamental chemistry behind the functionalization of methane and the activation of dinitrogen in a homogeneous environment. A catalytic cycle is proposed for the oxy-functionalization of methane to methanol. The cycle consists of two key steps: (1) C-H activation across a metal-alkoxide bond (M-OR), and (2) regeneration of the M-OR species through an oxy-insertion step utilizing external oxidants. The C-H activation step has been extensively studied; however, the latter step is not as well understood with limited examples. For this work, we focus on the oxy-insertion step starting with a class of compounds known to do C-H activation (i.e., Pt(II) systems). Computational studies …
Date: May 2013
Creator: Figg, Travis M.
System: The UNT Digital Library
Metals in Chemistry and Biology: Computational Chemistry Studies (open access)

Metals in Chemistry and Biology: Computational Chemistry Studies

Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized.
Date: May 2007
Creator: Dinescu, Adriana
System: The UNT Digital Library
Triimine Complexes of Divalent Group 10 Metals for Use in Molecular Electronic Devices (open access)

Triimine Complexes of Divalent Group 10 Metals for Use in Molecular Electronic Devices

This research focused on the development of new metal triimine complexes of Pt(II), Pd(II), and Ni(II) for use in three types of molecular electronic devices: dye sensitized solar cells (DSSCs), organic light-emitting diodes (OLEDs), and organic field effect transistors (OFETs). Inorganic complexes combine many advantages of their chemical and photophysical properties and are processable on inexpensive and large area substrates for various optoelectronic applications. For DSSCs, a series of platinum (II) triimine complexes were synthesized and evaluated as dyes for nanocrystalline oxide semiconductors. Pt (II) forms four coordinate square planar complexes with various co-ligands and counterions and leads to spanning absorption across a wide range in the UV-Vis-NIR regions. When those compounds were applied to the oxide semiconductors, they led to photocurrent generation thus verifying the concept of their utility in solar cells. In the OLEDs project, a novel pyridyl-triazolate Pt(II) complex, Pt(ptp)2 was synthesized and generated breakthrough OLEDs. In the solution state, the electronic absorption and emission of the square planar structure results in metal-to-ligand charge transfer (MLCT) and an aggregation band. Tunable photoluminescence and electroluminescence colors from blue to red wavelengths have been attained upon using Pt(ptp)2 under different experimental conditions and OLED architectures. In taking advantage of …
Date: August 2010
Creator: Chen, Wei-Hsuan
System: The UNT Digital Library
Layered Double Hydroxides as Anion- and Cation-Exchanging Materials (open access)

Layered Double Hydroxides as Anion- and Cation-Exchanging Materials

Layered double hydroxides (LDH) have been principally known as anion-exchanging, clay-like materials for several decades, and continues to be the main driving force for current and future research. The chemical interactions of LDH, with transition metallocyanides, have been a popular topic of investigation for many years, partly due to the use of powder x-ray diffraction and infrared spectroscopy as the main characterization tools. Each transition metallocyanide has a characteristic infrared stretching frequency that can be easily observed, and their respective sizes can be observed while intercalated within the interlayer of the LDH. The ability of LDH to incorporate metal cations or any ions/molecules/complexes, that have a postive charge, have not been previously investigated, mainly due to the chemical and physical nature of LDH. The possibility of cationic incorporation with LDH would most likely occur by surface adsorption, lattice metal replacement, or by intercalation into the LDH interlayers. Although infrared spectroscopy finds it main use through the identification of the anions incorporated with LDH, it can also be used to study and identify the various active and inactive bending and stretching modes that the metal hydroxide layers have.
Date: May 2007
Creator: Richardson, Mickey Charles
System: The UNT Digital Library
Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane. (open access)

Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane.

The luminescence properties of Van Der Waals' dimers and clusters of pyrene and diazapyrene have been investigated. Excimers, dimeric species which are associative in an excited electronic state and dissociative in their ground state, have long been established and play an important role in many areas of photochemistry. My work here focuses on the luminescence and absorption properties of ground state dimers/aggregates, which are less understood, and allows further characterization of the ground state and excited state association of these aromatic molecules.
Date: August 2007
Creator: Boateng, Stephen
System: The UNT Digital Library
The Mechanisms of Methane C–H Activation and Oxy-insertion Via Small Transition Metal Complexes: a DFT Computational Investigation (open access)

The Mechanisms of Methane C–H Activation and Oxy-insertion Via Small Transition Metal Complexes: a DFT Computational Investigation

Our country continues to demand clean renewable energy to meet the growing energy needs of our time. Thus, natural gas, which is 87% by volume of methane, has become a hot topic of discussion because it is a clean burning fuel. However, the transportation of methane is not easy because it is a gas at standard temperature and pressure. The usage of transition metals for the conversion of small organic species like methane into a liquid has been a longstanding practice in stoichiometric chemistry. Nonetheless, the current two-step process takes place at a high temperature and pressure for the conversion of methane and steam to methanol via CO + H2 (syngas). The direct oxidation of methane (CH4) into methanol (CH3OH) via homogeneous catalysis is of interest if the system can operate at standard pressure and a temperature less than 250 C. Methane is an inert gas due to the high C-H bond dissociation energy (BDE) of 105 kcal/mol. This dissertation discusses a series of computational investigations of oxy-insertion pathways to understand the essential chemistry behind the functionalization of methane via the use of homogeneous transition metal catalysis. The methane to methanol (MTM) catalytic cycle is made up of two key …
Date: May 2014
Creator: Prince, Bruce M.
System: The UNT Digital Library
Targeted and Metal-loaded Polymeric Nanoparticles As Potential Cancer Therapeutics (open access)

Targeted and Metal-loaded Polymeric Nanoparticles As Potential Cancer Therapeutics

Polymeric nanoparticles were designed, synthesized, and loaded with metal ions to explore the therapeutic potential for transition metals other than platinum found in cisplatin. Nanoparticles were synthesized to show the potential for polymer based vectors. Metal loading and release were characterized via Inductively Coupled Plasma Mass Spectrometry (ICP MS), Energy Dispersive X-Ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), and Elemental Analysis. Targeting was attempted with the expectation of observed increased particle uptake by cancer cells with flow cytometry and fluorescence microscopy. Results demonstrated that a variety of metals could be loaded to the nano-sized carriers in an aqueous environment, and that the release was pH-dependent. Expected increased targeting was inconsistent. The toxicity of these particles was measured in cancer cells where significant toxicity was observed in vitro via dosing of high copper-loaded nanoparticles and slight toxicity was observed in ruthenium-loaded nanoparticles. No significant toxicity was observed in cells dosed with metal-free nanoparticles. Future research will focus on ruthenium loaded polymeric nanoparticles with different targeting ligands dosed to different cell lines for the aim of increased uptake and decreased cancer cell viability.
Date: May 2014
Creator: Harris, Alesha N.
System: The UNT Digital Library
Exploring Inorganic Catalysis with Electronic Structure Simulations (open access)

Exploring Inorganic Catalysis with Electronic Structure Simulations

Organometallic catalysis has attracted significant interest from both industry and academia due to its wide applications in organic synthetic transformations. Example of such transformations include the reaction of a zinc carbenoid with olefins to form cyclopropanes. The first project is a computational study using both density functional and correlated wavefunction methods of the reaction between ethylene and model zinc carbenoid, nitrenoid and oxenoid complexes (L-Zn-E-X, E = CH2, NH or O, L = X = I or Cl). It was shown that cyclopropanation of ethylene with IZnCH2I and aziridination of ethylene with IZnNHI proceed via a single-step mechanism with an asynchronous transition state. The reaction barrier for the aziridination with IZnNHI is lower than that of cyclopropanation. Changing the leaving group of IZnNHI from I to Cl, changes the mechanism of the aziridination reaction to a two-step pathway. The calculation results from the epoxidation with IZnOI and ClZnOCl oxenoids suggest a two-step mechanism for both oxenoids. Another important example of organometallic catalysis is the formation of alkyl arenes from arenes and olefins using transition metal catalysis (olefin hydroarylation). We studied with DFT methods the mechanism of a novel Rh catalyst (FlDAB)Rh(TFA)(η2–C2H4) [FlDAB = N,N’ -bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] that converts …
Date: May 2016
Creator: Khani, Sarah Karbalaei
System: The UNT Digital Library
Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices. (open access)

Photophysical studies of silver(I), platinum(II), palladium(II), and nickel(II) complexes and their use in electronic devices.

This dissertation deals with two major topics that involve spectroscopic studies of (a) divalent group 10 metals and (b) silver(I)-phosphine complexes. The scope of the work involved the delineation of the electronic structure of these complexes in different environments and their use in electronic devices. The first topic is a look at the luminescence of tetrahedral silver(I)-phosphine complexes. Broad unstructured emissions with large Stokes shifts were found for these complexes. Computational analysis of the singlet and triplet state geometries suggests that this emission is due to a Jahn-Teller type distortion. The second topic represents the major thrust of this research, which is an investigation into the electronic structure of M(diimine)X2 (M= Pt(II), Pd(II), or Ni(II); X = dichloro, or dithiolate ligands) complexes and their interactions with an electron acceptor or Lewis acid. Chapter 3 assesses the use of some of these complexes in dye sensitized solar cells (DSSCs); it is shown that these complexes may lead to a viable alternative to the more expensive ruthenium-based dyes that are being implemented now. Chapter 4 is an investigation into donor/acceptor pairs involving this class of complexes, which serves as a feasibility test for the use of these complexes in organic photo-voltaics (OPVs) …
Date: December 2007
Creator: Hudson, Joshua M.
System: The UNT Digital Library
A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems (open access)

A Computational Investigation of the Photophysical, Electronic and Bonding Properties of Exciplex-Forming Van der Waals Systems

Calculations were performed on transition-metal complexes to (1) extrapolate the structure and bonding of the ground and phosphorescent states (2) determine the luminescence energies and (3) assist in difficult assignment of luminescent transitions. In the [Pt(SCN)4]2- complex, calculations determined that the major excited-state distortion is derived from a b2g bending mode rather than from the a1g symmetric stretching mode previously reported in the literature. Tuning of excimer formation was explained in the [Au(SCN)2]22- by interactions with the counterion. Weak bonding interactions and luminescent transitions were explained by calculation of Hg dimers, excimers and exciplexes formed with noble gases.
Date: December 2007
Creator: Sinha, Pankaj
System: The UNT Digital Library
Design and Synthesis of Novel Cage-Functionalized Crown Ethers: A New Class of Ag Complexants. (open access)

Design and Synthesis of Novel Cage-Functionalized Crown Ethers: A New Class of Ag Complexants.

Three different types of cage crown ethers have been prepared and their complexation properties with Ag(I) have been studied. Atomic absorption, fluorescence quenching, and UV absorption have been used to study the interaction between the hosts (cage crown ethers) and guests (Ag+). For the cage-annulated crown ethers that contain aromatic rings, cation-π and π-π interactions may contribute significantly to the overall complexation ability of the host system. Piperazine groups may cooperate, and the piperazine nitrogen atoms provide unshared electrons, which may form a complex with Ag+. In addition, relatively soft donor atoms (e.g., Br) are well-suited for complexation with Ag+, which is a softer Lewis acid than alkali metal cations.
Date: August 2003
Creator: Lai, Huiguo
System: The UNT Digital Library
Layered Double Hydroxides: Synthesis, Characterization, and Interaction of Mg-Al Systems with Intercalated Tetracyanonickelate(II) (open access)

Layered Double Hydroxides: Synthesis, Characterization, and Interaction of Mg-Al Systems with Intercalated Tetracyanonickelate(II)

The square-planar tetracyanonickelate(II) anion was intercalated into 2:1 and 3:1 Mg-Al layered double hydroxide systems (LDHs). In the 2:1 material, the anion holds itself at an angle of about 30° to the layers, whereas in the 3:1 material it lies more or less parallel to the layers. This is confirmed by orientation effects in the infrared spectra of the intercalated materials and by X-ray diffraction (XRD) data. The measured basal spacings for the intercalated LDH hosts are approximately 11 Å for the 2:1 and approximately 8 Å for the 3:1. The IR of the 2:1 material shows a slight splitting in the ν(CN) peak, which is suppressed in that compound's oriented IR spectrum, indicating that at least some of the intercalated anion's polarization is along the z-axis. This effect is not seen in the 3:1 material. A comparison between chloride LDHs and nitrate LDHs was made with respect to intercalation of tetracyanonickelate(II) anions. Both XRD data and atomic absorption spectroscopy (AAS) data of the LDH tetracyanonickelates confirms that there are no significant differences between the products from the two types of starting materials. The presence of a weak ν(NO) peak in the IR spectra of those samples made from nitrate …
Date: August 2004
Creator: Brister, Fang Wei
System: The UNT Digital Library
Modeling the chemical and photophysical properties of gold complexes. (open access)

Modeling the chemical and photophysical properties of gold complexes.

Various gold complexes were computationally investigated, to probe their photophysical, geometric, and bonding properties. The geometry of AuI complexes (ground state singlet) is very sensitive to the electronic nature of the ligands: σ-donors gave a two-coordinate, linear shape; however, σ-acceptors yielded a three-coordinate, trigonal planar geometry. Doublet AuIIL3 complexes distort to T-shape, and are thus ground state models of the corresponding triplet AuIL3. The disproportionation of AuIIL3 to AuIL3 and AuIIIL3 is endothermic for all ligands investigated, however, σ-donors are better experimental targets for AuII complexes. For dimeric AuI complexes, only one gold center in the optimized triplet exciton displays a Jahn-Teller distortion, and the Au---Au distance is reduced versus the ground state distance (i.e., two reasons for large Stokes' shifts).
Date: August 2004
Creator: Barakat, Khaldoon A.
System: The UNT Digital Library

An NMR Study of Trimethylsilylmethyllithium Aggregates and Mixed Trimethylsilylmethyllithium/Lithium trimethylsilylmethoxide Aggregates

Access: Use of this item is restricted to the UNT Community
An NMR spectroscopy study of trimethylsilylmethyllilthium, TMSM-Li, indicates that TMSM-Li exists as two different aggregates in cyclopentane solution. Using previously reported colligative properties of TMSM-Li in different solutions in connection with new 13C and 6Li NMR data collected in this study, aggregation states were assigned as octamer and hexamer. Low temperature 13C and 6Li NMR peak intensities indicated an equilibrium exists between the two aggregates that shifts toward the octamer as the temperature decreases. ΔH was calculated to be 5.23 + 0.15 kcal/mol and ΔS was calculated to be 17.9 + 0.6 eu for the hexamer/octamer equilibrium system. Samples of TMSM-Li were mixed with TMSM-OH in attempts to form mixed alkyllithium/lithium alkoxide aggregates. 13C NMR data for these mixtures gave inconclusive results whether or not these compounds formed, which is different from other primary alkyllithium compounds studied in the past. A study of neopentyllithium, NpLi, indicates only one aggregate in solution with the aggregation state unknown using low temperature 13C NMR spectroscopy.
Date: December 2004
Creator: Medley, Marilyn S.
System: The UNT Digital Library

De novo prediction of the ground state structure of transition metal complexes.

Access: Use of this item is restricted to the UNT Community
One of the main goals of computational methods is to identify reasonable geometries for target materials. Organometallic complexes have been investigated in this dissertation research, entailing a significant challenge based on transition metal diversity and the associated complexity of the ligands. A large variety of theoretical methods have been employed to determine ground state geometries of organometallic species. An impressive number of transition metals entailing diverse isomers (e.g., geometric, spin, structural and coordination), different coordination numbers, oxidation states and various numbers of electrons in d orbitals have been studied. Moreover, ligands that are single, double or triple bonded to the transition metal, exhibiting diverse electronic and steric effects, have been investigated. In this research, a novel de novo scheme for structural prediction of transition metal complexes was developed, tested and shown to be successful.
Date: December 2004
Creator: Buda, Corneliu
System: The UNT Digital Library
Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices (open access)

Design, Synthesis and Screening of Homoleptic and Heteroleptic Platinum(ii) Pyridylazolate Complexes for N-type Semiconducting and Light-emitting Devices

A series of heteroleptic and homoleptic platinum(II) complexes has been synthesized and characterized towards their use in thin film devices such as organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs). Pyridylpyrazolate- and pyridyltetrazolate-containing ligands were selected due to their structural rigidity and ease of functionalization. Single-crystal x-ray diffraction studies of two selected heteroleptic complexes show strong aggregation with preferential stacking into vertical columns with a varying degree of overlap of the neighboring square planar molecular units. It is shown that the close proximity of the molecules to one another in the stack increases semiconducting character, phosphorescence quantum yields, and shorter radiative lifetimes. The potential for these materials towards incorporation into high-efficiency doping free white OLEDs (DFW-OLEDs) for solid-state lighting and display applications has been realized and will be expanded upon by present and future embodiments of materials in this thesis.
Date: August 2012
Creator: Oswald, Iain William Herbert
System: The UNT Digital Library

Modeling wild type and mutant glutathione synthetase.

Access: Use of this item is restricted to the UNT Community
Glutathione syntethase (GS) is an enzyme that belongs to the ATP-grasp superfamily and catalyzes the second step in the biosynthesis of glutathione. GS has been purified and sequenced from a variety of biological sources; still, its exact mechanism is not fully understood. Four highly conserved residues were identified in the binding site of human GS. Additionally, the G-loop residues that close the active site during catalysis were found to be conserved. Since these residues are important for catalysis, their function was studied computationally by site-directed mutagenesis. Starting from the reported crystal structure of human GS, different conformations for the wild type and mutants were obtained using molecular dynamics technique. The key interactions between residues and ligands were detected and found to be essential for enzyme activity.
Date: August 2004
Creator: Dinescu, Adriana
System: The UNT Digital Library
Computational Studies of Coordinatively Unsaturated Transition Metal Complexes (open access)

Computational Studies of Coordinatively Unsaturated Transition Metal Complexes

In this research the validity of various computational techniques has been determined and applied the appropriate techniques to investigate and propose a good catalytic system for C-H bond activation and functionalization. Methane being least reactive and major component of natural gas, its activation and conversion to functionalized products is of great scientific and economic interest in pure and applied chemistry. Thus C-H activation followed by C-C/C-X functionalization became crux of the synthesis. DFT (density functional theory) methods are well suited to determine the thermodynamic as well as kinetic factors of a reaction. The obtained results are helpful to industrial catalysis and experimental chemistry with additional information: since C-X (X = halogens) bond cleavage is important in many metal catalyzed organic syntheses, the results obtained in this research helps in determining the selectivity (kinetic or thermodynamic) advantage. When C-P bond activation is considered, results from chapter 3 indicated that C-X activation barrier is lower than C-H activation barrier. The results obtained from DFT calculations not only gave a good support to the experimental results and verified the experimentally demonstrated Ni-atom transfer mechanism from Ni=E (E = CH2, NH, PH) activating complex to ethylene to form three-membered ring products but also validated …
Date: December 2006
Creator: Vaddadi, Sridhar
System: The UNT Digital Library
Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores (open access)

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of …
Date: August 2006
Creator: El-Bjeirami, Oussama
System: The UNT Digital Library
Biological Applications of a Strongly Luminescent Platinum (II) Complex in Reactive Oxygen Species Scavenging and Hypoxia Imaging in Caenorhabditis elegans (open access)

Biological Applications of a Strongly Luminescent Platinum (II) Complex in Reactive Oxygen Species Scavenging and Hypoxia Imaging in Caenorhabditis elegans

Phosphorescent transition metal complexes make up an important group of compounds that continues to attract intense research owing to their intrinsic bioimaging applications that arise from bright emissions, relatively long excited state lifetimes, and large stokes shifts. Now for biomaging assay a model organism is required which must meet certain criteria for practical applications. The organism needs to be small, with a high turn-over of progeny (high fecundity), a short lifecycle, and low maintenance and assay costs. Our model organism C. elegans met all the criteria. The ideal phosphor has low toxicity in the model organism. In this work the strongly phosphorescent platinum (II) pyrophosphito-complex was tested for biological applications as a potential in vivo hypoxia sensor. The suitability of the phosphor was derived from its water solubility, bright phosphorescence at room temperature, and long excited state lifetime (~ 10 µs). The applications branched off to include testing of C. elegans survival when treated with the phosphor, which included lifespan and fecundity assays, toxicity assays including the determination of the LC50, and recovery after paraquat poisoning. Quenching experiments were performed using some well knows oxygen derivatives, and the quenching mechanisms were derived from Stern-Volmer plots. Reaction stoichiometries were derived from …
Date: December 2015
Creator: Kinyanjui, Sophia Nduta
System: The UNT Digital Library
Design, Synthesis, and Characterization of Aqueous Polymeric Hybrid Composites and Nanomaterials of Platinum(II) and Gold(I) Phosphorescent Complexes for Sensing and Biomedical Applications (open access)

Design, Synthesis, and Characterization of Aqueous Polymeric Hybrid Composites and Nanomaterials of Platinum(II) and Gold(I) Phosphorescent Complexes for Sensing and Biomedical Applications

The two major topics studied in this dissertation are the gold(I) pyrazolate trimer {[Au(3-R,5-R’)Pz]3} complexes in aqueous chitosan polymer and phosphorescent polymeric nanoparticles based on platinum(II) based complex. The first topic is the synthesis, characterization and optical sensing application of gold(I) pyrazolate trimer complexes within aqueous chitosan polymer. A gold(I) pyrazolate trimer complex, {[Au(3-CH3,5-COOH)Pz]3}, shows high sensitivity and selectivity for silver ions in aqueous media, is discussed for optical sensing and solution-processed organic light emitting diodes (OLEDs) applications. Gold(I) pyrazolate trimer complexes are bright red emissive in polymeric solution and their emission color changes with respect to heavy metal ions, pH and dissolved carbon dioxide. These photophysical properties are very useful for designing the optical sensors. The phosphorescent polymeric nanoparticles are prepared with Pt-POP complex and polyacrylonitrile polymer. These particles show excellent photophysical properties and stable up to >3 years at room temperature. Such nanomaterials have potential applications in biomedical and polymeric OLEDs. The phosphorescent hybrid composites are also prepared with Pt-POP and biocompatible polymers, such as chitosan, poly-l-lysine, BSA, pnipam, and pdadmac. Photoluminescent enhancement of Pt-POP with such polymers is also involved in this study. These hybrid composites are promising materials for biomedical applications such as protein labeling and …
Date: December 2015
Creator: Upadhyay, Prabhat Kumar
System: The UNT Digital Library
Computational Studies of Inorganic Systems with a Multiscale Modeling Approach: From Atomistic to Continuum Scale (open access)

Computational Studies of Inorganic Systems with a Multiscale Modeling Approach: From Atomistic to Continuum Scale

Multiscale modeling is an effective tool for integrating different computational methods, creating a way of modeling diverse chemical and physical phenomena. Presented are studies on a variety of chemical problems at different computational scales and also the combination of different computational methods to study a single phenomenon. The methods used encompass density functional theory (DFT), molecular dynamics (MD) simulations and finite element analysis (FEA). The DFT studies were conducted both on the molecular level and using plane-wave methods. The particular topics studied using DFT are the rational catalyst design of complexes for C—H bond activation, oxidation of nickel surfaces and the calculation of interaction properties of carbon dioxide containing systems directed towards carbon dioxide sequestration studies. Second and third row (typically precious metals) transition metal complexes are known to possess certain electronic features that define their structure and reactivity, and which are usually not observed in their first-row (base metal) congeners. Can these electronic features be conferred onto first-row transition metals with the aid of non-innocent and/or very high-field ligands? Using DFT, the impact of these electronic features upon methane C—H bond activation was modeled using the dipyridylazaallyl (smif) supporting ligand for late, first-row transition metal (M) imide, oxo and …
Date: August 2013
Creator: Olatunji-Ojo, Olayinka A.
System: The UNT Digital Library
Solution Studies of ⁶Li Enriched Organolithium Compounds Using New NMR Techniques (open access)

Solution Studies of ⁶Li Enriched Organolithium Compounds Using New NMR Techniques

With the values of 6Li T1 measured and the literature values of J(13C-6Li) for these compounds, three new 13C NMR techniques are developed for the analysis of organolithium compounds. Modifications to the spectrometer are discussed, as well as calibrations of the 6Li decoupler channel needed to set up these new experiments. The theoretical development of each technique is presented, as well as data from their verification, using organolithium compounds of known structure. Once qualified, the new experimental techniques are used to analyze a series of alkyllithium / lithium alkoxide mixed aggregates in solution, where structures and values of J(13C-6Li) may not be known. The combination of Ti relaxation measurements and 13C{1H, 6Li} triple resonance techniques serves as a means of determining the structure of organolithium aggregates in solution.
Date: May 1990
Creator: Ellington, Donald H. (Donald Howard)
System: The UNT Digital Library
Synthesis, Characterization and Catalytic Studies of Chiral Gold Acyclic Diaminocarbene Complexes (open access)

Synthesis, Characterization and Catalytic Studies of Chiral Gold Acyclic Diaminocarbene Complexes

Chiral gold complexes have been applied in homogeneous catalytic reactions since 1986, in some cases with high enantioselectivity. Acyclic diaminocarbene (ADC) ligands are acyclic analogues of N-heterocyclic carbenes (NHCs) that have larger N-CCarbene-N angles and stronger donating ability. ADCs have been developed as alternatives to phosphine and NHC ligands in homogeneous gold catalysis. In 2012, a new series of chiral gold(I) ADCs were first developed by Slaughter's group and were shown to give remarkable enantioselectivities in some reactions. Because of the hindered rotation of the N-CCarbene bonds of ADC, chiral ADC substituents can easily get close to the metal center in some conformations, although two rotameric structures are formed if the chiral amine is nonsymmetric. The selective of specific ADC conformations was the initial focus of this study. Formational selectivity of one diastereomer of an ADC ligand during synthesis was examines by measuring the relative rates of diastereomer formation in a 1H NMR kinetic study. The potential for converting multiple conformational isomers of ADCs into a single conformation, or at least a simpler mixture, was examined. This study used the analogy that anti- isomer has electronic and structural similarity with urea/thiourea, raising the possibility that 1,8-naphthyridine can be used to …
Date: August 2016
Creator: Zhang, Xiaofan
System: The UNT Digital Library