Degree Discipline

The Role of Eigenvalues of Parity Check Matrix in Low-Density Parity Check Codes (open access)

The Role of Eigenvalues of Parity Check Matrix in Low-Density Parity Check Codes

The new developments in coding theory research have revolutionized the application of coding to practical systems. Low-Density Parity Check (LDPC) codes form a class of Shannon limit approaching codes opted for digital communication systems that require high reliability. This thesis investigates the underlying relationship between the spectral properties of the parity check matrix and LDPC decoding convergence. The bit error rate of an LDPC code is plotted for the parity check matrix that has different Second Smallest Eigenvalue Modulus (SSEM) of its corresponding Laplacian matrix. It is found that for a given (n,k) LDPC code, large SSEM has better error floor performance than low SSEM. The value of SSEM decreases as the sparseness in a parity-check matrix is increased. It was also found from the simulation that long LDPC codes have better error floor performance than short codes. This thesis outlines an approach to analyze LDPC decoding based on the eigenvalue analysis of the corresponding parity check matrix.
Date: August 2020
Creator: Adhikari, Dikshya
System: The UNT Digital Library
Adaptive Slot Location in the Design of Slotted Microstrip Multi-Frequency Antenna for Radionavigation and Radiolocation Applications (open access)

Adaptive Slot Location in the Design of Slotted Microstrip Multi-Frequency Antenna for Radionavigation and Radiolocation Applications

In light of incidents and concerns regarding the vulnerability of the global positioning system (GPS), the main purpose of the thesis is to look at alternative systems for radio guidance and to put up a serious study on such alternatives with receive and transmit antenna. There is also the need to design such antennas with multiple frequencies to offer robustness in the unlikely event that such adversarial attacks on the GPS happen. The basis on which such alternative antennas are designed is a slotted microstrip. The characteristics of the slot or slots on the microstrip are analyzed by mapping their exact locations on the patch and then noting the resultant center frequencies, the return losses, and the bandwidth. The activities associated with this also focus on the design, fabrication, validation, and characterization of one or more slotted antennas prototypes. The measurement of the antenna prototypes does confirm several frequencies that coexist to see applications, in aeronautical radionavigation, fixed-mobile radionavigation, and radiolocation. The antennas could also feature in a wide-area augmentation system (WAAS), satellite ground link system (SGLS) as well as in surveillance and precision approach radars. Some variations of the antenna are deployed in the areas of law enforcement, surveillance, …
Date: August 2020
Creator: Agbor, Ikechukwu Wilson
System: The UNT Digital Library
Gamification to Solve a Mapping Problem in Electrical Engineering (open access)

Gamification to Solve a Mapping Problem in Electrical Engineering

Coarse-Grained Reconfigurable Architectures (CGRAs) are promising in developing high performance low-power portable applications. In this research, we crowdsource a mapping problem using gamification to harnass human intelligence. A scientific puzzle game, Untangled, was developed to solve a mapping problem by encapsulating architectural characteristics. The primary motive of this research is to draw insights from the mapping solutions of players who possess innate abilities like decision-making, creative problem-solving, recognizing patterns, and learning from experience. In this dissertation, an extensive analysis was conducted to investigate how players' computational skills help to solve an open-ended problem with different constraints. From this analysis, we discovered a few common strategies among players, and subsequently, a library of dictionaries containing identified patterns from players' solutions was developed. The findings help to propose a better version of the game that incorporates these techniques recognized from the experience of players. In the future, an updated version of the game that can be developed may help low-performance players to provide better solutions for a mapping problem. Eventually, these solutions may help to develop efficient mapping algorithms, In addition, this research can be an exemplar for future researchers who want to crowdsource such electrical engineering problems and this approach can …
Date: May 2020
Creator: Balavendran Joseph, Rani Deepika
System: The UNT Digital Library

Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices

In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding …
Date: December 2020
Creator: Bandyopadhyay, Avra Sankar
System: The UNT Digital Library

Efficient Solar Energy Harvesting and Management for Wireless Sensor Networks under Varying Solar Irradiance Conditions

Although wireless sensor networks have been successfully used for environmental monitoring, one of the major challenges that this technology has been facing is supplying continuous and reliable electrical power during long-term field deployment. Batteries require repetitive visits to the deployment site to replace them once discharged; admittedly, they can be recharged from solar panels, but this only works in open areas where solar radiation is unrestricted. This dissertation introduces a novel approach to design and implement a reliable efficient solar energy harvester to continuously, and autonomously, provide power to wireless sensor nodes for long-term applications. The system uses supercapacitors charged by a solar panel and is designed to reduce power consumption to very low levels. Field tests were conducted for more than a year of continuous operation and under a variety of conditions, including areas under dense foliage. The resulting long-term field data demonstrates the feasibility and sustainability of the harvester system for challenging applications. In addition, we analyzed solar radiation data and supercapacitor charging behavior and showed that the harvester system can operate battery free, running on the power provided by supercapacitors. A battery is included only for backup in case the supercapacitor storage fails. The proposed approach provides …
Date: May 2020
Creator: Gurung, Sanjaya
System: The UNT Digital Library
Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing (open access)

Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing

A wearable body temperature sensor would allow for early detection of fever or infection, as well as frequent and accurate hassle-free recording. This thesis explores the design of a body-temperature-sensing device inkjet-printed on a flexible substrate. All structures were first modeled by first-principles, theoretical calculations, and then simulated in HFSS. A variety of planar square inductor geometries were studied before selecting an optimal design. The designs were fabricated using multiple techniques and compared to the simulation results. It was determined that inductance must be carefully measured and documented to ensure good functionality. The same is true for parallel-plate and interdigitated capacitors. While inductance remains relatively constant with temperature, the capacitance of the device with a temperature-sensitive dielectric layer will result in a shift in the resonant frequency as environmental or ambient temperature changes. This resonant frequency can be wirelessly detected, with no battery required for the sensing device, from which the temperature can be deduced. From this work, the optimized version of the design comprises of conductive silver in with a temperature-sensitive graphene oxide layer, intended for inkjet-printing on flexible polyimide substrates. Graphene oxide demonstrates a high dielectric permittivity with good sensing capabilities and high accuracy. This work pushes the …
Date: May 2020
Creator: Horn, Jacqueline Marie
System: The UNT Digital Library
Inkjet Printed Transition Metal Dichalcogenides and Organohalide Perovskites for Photodetectors and Solar Cells (open access)

Inkjet Printed Transition Metal Dichalcogenides and Organohalide Perovskites for Photodetectors and Solar Cells

This dissertation is devoted to the development of novel devices for optoelectronic and photovoltaic applications using the promise of inkjet printing with two-dimensional (2D) materials. A systematic approach toward the characterization of the liquid exfoliated 2D inks comprising of graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and 2D perovskites is discussed at depth. In the first study, the biocompatibility of 2D materials -- graphene and MoS2 -- that were drop cast onto flexible PET and polyimide substrates using mouse embryonic fibroblast (STO) and human esophageal fibroblast (HEF) cell lines, was explored. The polyimide samples for both STO and HEF showed high biocompatibility with a cell survival rate of up to ~ 98% and a confluence rate of 70-98%. An inkjet printed, biocompatible, heterostructure photodetector was constructed using inks of photo-active MoS2 and electrically conducting graphene, which facilitated charge collection of the photocarriers. The importance of such devices stems from their potential utility in age-related-macular degeneration (AMD), which is a condition where the photosensitive retinal tissue degrades with aging, eventually compromising vision. The biocompatible inkjet printed 2D heterojunction devices were photoresponsive to broadband incoming radiation in the visible regime, and the photocurrent scaled proportionally with the incident light intensity, exhibiting a …
Date: May 2020
Creator: Hossain, Ridwan Fayaz
System: The UNT Digital Library
Interference Alignment through Propagation Delay (open access)

Interference Alignment through Propagation Delay

With the rapid development of wireless communication technology, the demands for higher communication rates are increasing. Higher communication rate corresponds to higher DoF. Interference alignment, which is an emerging interference management technique, is able to substantially increase the DoF of wireless communication systems. This thesis mainly studies the delay-based interference alignment technique. The key problem lies in the design of the transmission scheme and the appropriate allocation of the propagation delay, so as to achieve the desired DoF of different wireless networks. In addition, through delay-based interference alignment, the achievability of extreme points of the DoF region of different wireless networks can be proved.
Date: May 2020
Creator: Liu, Zhonghao
System: The UNT Digital Library

Assistive Navigation Technology for Visually Impaired Individuals

Sight is essential in our daily tasks. Compensatory senses have been used for centuries by visually impaired individuals to navigate independently. The help of technology can minimize some challenges for visually impaired individuals. Assistive navigation technologies facilitate the pathfinding and tracing in indoor scenarios. Different modules are added to assistive navigation technologies to warn about the obstacles not only on the ground but about hanging objects. In this work, we attempt to explore new methods to assist visually impaired individuals in navigating independently in an indoor scenario. We employed a location estimation algorithm based on the fingerprinting method to estimate the initial location of the user. We mitigate the error of estimation with particle filter. The shortest path has been calculated with an A* algorithm. To provide the user with an accident-free experiment, we employed an obstacle avoidance algorithm capable of warning the users about the potential hazards. Finally, to provide an effective means of communication with the user, we employed text-to-speech and speech recognition algorithms. The main contribution of this work is to glue these modules together efficiently and affordably.
Date: August 2020
Creator: Norouzi Kandalan, Roya
System: The UNT Digital Library
High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids (open access)

High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids

In this work, we study the properties and device applications of MoS2, black phosphorus, MoOx, and NbSe2. We first start with the design, fabrication, and characterization of ultra-high responsivity photodetectors based on mesoscopic multilayer MoS2. The device architecture is comprised of a metal-semiconductor-metal (MSM) photodetector, where Mo was used as the contact metal to suspended MoS2 membranes. The dominant photocurrent mechanism was determined to be the photoconductive effect, while a contribution from the photogating effect was also noted from trap-states that yielded a wide spectral photoresponse from UV-to-IR with an external quantum efficiency (EQE) ~ 104. From time-resolved photocurrent measurements, a fast decay time and response time were obtained with a stream of incoming ON/OFF white light pulses. Another interesting semiconductor 2D material that has attracted special attention due to its small bandgap and ultra-high hole mobility is the black phosphorus. An analysis of the optoelectronic properties and photocurrent generation mechanisms in two-dimensional (2D) multilayer crystallites of black phosphorus (BP) was conducted from 350 K down to cryogenic temperatures using a broad-band white light source. The Mo-BP interface yielded a low Schottky barrier "φ" _"SB" ~ -28.3 meV and a high photoresponsivity R of ~ 2.43 x 105 A/W at …
Date: May 2020
Creator: Saenz Saenz, Gustavo Alberto
System: The UNT Digital Library
Design of Ultra Wideband Low Noise Amplifier for Satellite Communications (open access)

Design of Ultra Wideband Low Noise Amplifier for Satellite Communications

This thesis offers the design and improvement of a 2 GHz to 20 GHz low noise amplifier (LNA) utilizing pHEMT technology. The pHEMT technology allows the LNA to generate a boosted signal at a lower noise figure (NF) while consuming less power and achieving smooth overall gain. The design achieves an overall gain (S21) of ≥ 10 dB with an NF ≤ 2 dB while consuming ≤ 30 mA of power while using commercial off-the-shelf (COTS) components.
Date: May 2020
Creator: Webber, Scott
System: The UNT Digital Library
Efficient Linear Secure Computation and Symmetric Private Information Retrieval Protocols (open access)

Efficient Linear Secure Computation and Symmetric Private Information Retrieval Protocols

Security and privacy are of paramount importance in the modern information age. Secure multi-party computation and private information retrieval are canonical and representative problems in cryptography that capture the key challenges in understanding the fundamentals of security and privacy. In this dissertation, we use information theoretic tools to tackle these two classical cryptographic primitives. In the first part, we consider the secure multi-party computation problem, where multiple users, each holding an independent message, wish to compute a function on the messages without revealing any additional information. We present an efficient protocol in terms of randomness cost to securely compute a vector linear function. In the second part, we discuss the symmetric private information retrieval problem, where a user wishes to retrieve one message from a number of replicated databases while keeping the desired message index a secret from each individual database. Further, the user learns nothing about the other messages. We present an optimal protocol that achieves the minimum upload cost for symmetric private information retrieval, i.e., the queries sent from the user to the databases have the minimum number of bits.
Date: December 2020
Creator: Zhou, Yanliang
System: The UNT Digital Library