Degree Discipline

Month

Gamification to Solve a Mapping Problem in Electrical Engineering (open access)

Gamification to Solve a Mapping Problem in Electrical Engineering

Coarse-Grained Reconfigurable Architectures (CGRAs) are promising in developing high performance low-power portable applications. In this research, we crowdsource a mapping problem using gamification to harnass human intelligence. A scientific puzzle game, Untangled, was developed to solve a mapping problem by encapsulating architectural characteristics. The primary motive of this research is to draw insights from the mapping solutions of players who possess innate abilities like decision-making, creative problem-solving, recognizing patterns, and learning from experience. In this dissertation, an extensive analysis was conducted to investigate how players' computational skills help to solve an open-ended problem with different constraints. From this analysis, we discovered a few common strategies among players, and subsequently, a library of dictionaries containing identified patterns from players' solutions was developed. The findings help to propose a better version of the game that incorporates these techniques recognized from the experience of players. In the future, an updated version of the game that can be developed may help low-performance players to provide better solutions for a mapping problem. Eventually, these solutions may help to develop efficient mapping algorithms, In addition, this research can be an exemplar for future researchers who want to crowdsource such electrical engineering problems and this approach can …
Date: May 2020
Creator: Balavendran Joseph, Rani Deepika
System: The UNT Digital Library

Efficient Solar Energy Harvesting and Management for Wireless Sensor Networks under Varying Solar Irradiance Conditions

Although wireless sensor networks have been successfully used for environmental monitoring, one of the major challenges that this technology has been facing is supplying continuous and reliable electrical power during long-term field deployment. Batteries require repetitive visits to the deployment site to replace them once discharged; admittedly, they can be recharged from solar panels, but this only works in open areas where solar radiation is unrestricted. This dissertation introduces a novel approach to design and implement a reliable efficient solar energy harvester to continuously, and autonomously, provide power to wireless sensor nodes for long-term applications. The system uses supercapacitors charged by a solar panel and is designed to reduce power consumption to very low levels. Field tests were conducted for more than a year of continuous operation and under a variety of conditions, including areas under dense foliage. The resulting long-term field data demonstrates the feasibility and sustainability of the harvester system for challenging applications. In addition, we analyzed solar radiation data and supercapacitor charging behavior and showed that the harvester system can operate battery free, running on the power provided by supercapacitors. A battery is included only for backup in case the supercapacitor storage fails. The proposed approach provides …
Date: May 2020
Creator: Gurung, Sanjaya
System: The UNT Digital Library
Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing (open access)

Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing

A wearable body temperature sensor would allow for early detection of fever or infection, as well as frequent and accurate hassle-free recording. This thesis explores the design of a body-temperature-sensing device inkjet-printed on a flexible substrate. All structures were first modeled by first-principles, theoretical calculations, and then simulated in HFSS. A variety of planar square inductor geometries were studied before selecting an optimal design. The designs were fabricated using multiple techniques and compared to the simulation results. It was determined that inductance must be carefully measured and documented to ensure good functionality. The same is true for parallel-plate and interdigitated capacitors. While inductance remains relatively constant with temperature, the capacitance of the device with a temperature-sensitive dielectric layer will result in a shift in the resonant frequency as environmental or ambient temperature changes. This resonant frequency can be wirelessly detected, with no battery required for the sensing device, from which the temperature can be deduced. From this work, the optimized version of the design comprises of conductive silver in with a temperature-sensitive graphene oxide layer, intended for inkjet-printing on flexible polyimide substrates. Graphene oxide demonstrates a high dielectric permittivity with good sensing capabilities and high accuracy. This work pushes the …
Date: May 2020
Creator: Horn, Jacqueline Marie
System: The UNT Digital Library
Inkjet Printed Transition Metal Dichalcogenides and Organohalide Perovskites for Photodetectors and Solar Cells (open access)

Inkjet Printed Transition Metal Dichalcogenides and Organohalide Perovskites for Photodetectors and Solar Cells

This dissertation is devoted to the development of novel devices for optoelectronic and photovoltaic applications using the promise of inkjet printing with two-dimensional (2D) materials. A systematic approach toward the characterization of the liquid exfoliated 2D inks comprising of graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and 2D perovskites is discussed at depth. In the first study, the biocompatibility of 2D materials -- graphene and MoS2 -- that were drop cast onto flexible PET and polyimide substrates using mouse embryonic fibroblast (STO) and human esophageal fibroblast (HEF) cell lines, was explored. The polyimide samples for both STO and HEF showed high biocompatibility with a cell survival rate of up to ~ 98% and a confluence rate of 70-98%. An inkjet printed, biocompatible, heterostructure photodetector was constructed using inks of photo-active MoS2 and electrically conducting graphene, which facilitated charge collection of the photocarriers. The importance of such devices stems from their potential utility in age-related-macular degeneration (AMD), which is a condition where the photosensitive retinal tissue degrades with aging, eventually compromising vision. The biocompatible inkjet printed 2D heterojunction devices were photoresponsive to broadband incoming radiation in the visible regime, and the photocurrent scaled proportionally with the incident light intensity, exhibiting a …
Date: May 2020
Creator: Hossain, Ridwan Fayaz
System: The UNT Digital Library
Interference Alignment through Propagation Delay (open access)

Interference Alignment through Propagation Delay

With the rapid development of wireless communication technology, the demands for higher communication rates are increasing. Higher communication rate corresponds to higher DoF. Interference alignment, which is an emerging interference management technique, is able to substantially increase the DoF of wireless communication systems. This thesis mainly studies the delay-based interference alignment technique. The key problem lies in the design of the transmission scheme and the appropriate allocation of the propagation delay, so as to achieve the desired DoF of different wireless networks. In addition, through delay-based interference alignment, the achievability of extreme points of the DoF region of different wireless networks can be proved.
Date: May 2020
Creator: Liu, Zhonghao
System: The UNT Digital Library
High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids (open access)

High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids

In this work, we study the properties and device applications of MoS2, black phosphorus, MoOx, and NbSe2. We first start with the design, fabrication, and characterization of ultra-high responsivity photodetectors based on mesoscopic multilayer MoS2. The device architecture is comprised of a metal-semiconductor-metal (MSM) photodetector, where Mo was used as the contact metal to suspended MoS2 membranes. The dominant photocurrent mechanism was determined to be the photoconductive effect, while a contribution from the photogating effect was also noted from trap-states that yielded a wide spectral photoresponse from UV-to-IR with an external quantum efficiency (EQE) ~ 104. From time-resolved photocurrent measurements, a fast decay time and response time were obtained with a stream of incoming ON/OFF white light pulses. Another interesting semiconductor 2D material that has attracted special attention due to its small bandgap and ultra-high hole mobility is the black phosphorus. An analysis of the optoelectronic properties and photocurrent generation mechanisms in two-dimensional (2D) multilayer crystallites of black phosphorus (BP) was conducted from 350 K down to cryogenic temperatures using a broad-band white light source. The Mo-BP interface yielded a low Schottky barrier "φ" _"SB" ~ -28.3 meV and a high photoresponsivity R of ~ 2.43 x 105 A/W at …
Date: May 2020
Creator: Saenz Saenz, Gustavo Alberto
System: The UNT Digital Library
Design of Ultra Wideband Low Noise Amplifier for Satellite Communications (open access)

Design of Ultra Wideband Low Noise Amplifier for Satellite Communications

This thesis offers the design and improvement of a 2 GHz to 20 GHz low noise amplifier (LNA) utilizing pHEMT technology. The pHEMT technology allows the LNA to generate a boosted signal at a lower noise figure (NF) while consuming less power and achieving smooth overall gain. The design achieves an overall gain (S21) of ≥ 10 dB with an NF ≤ 2 dB while consuming ≤ 30 mA of power while using commercial off-the-shelf (COTS) components.
Date: May 2020
Creator: Webber, Scott
System: The UNT Digital Library