Fatty Acid Amide Hydrolases in Upland Cotton (Gossypium hirsutum L.) and the Legume Model Medicago truncatula

Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, best known for inactivating the signal of N-acylethanolamine (NAE) lipid mediators. In the plant Arabidopsis thaliana, FAAH-mediated hydrolysis of NAEs has been associated with numerous biological processes. Recently, the phylogenetic distribution of FAAH into two major branches (group I and II FAAHs) across angiosperms outside of Arabidopsis (and in other Brassicaceae), suggests a previously unrecognized complexity of this enzyme. Although A. thaliana has long been used to assess biological questions for plants, in this case it will fall short in understanding the significance of multiple FAAHs in other plant systems. Thus, in this study, I examined the role (s) of six FAAH isoforms in upland cotton (Gossypium hirsutum L.) and two FAAHs in the legume Medicago truncatula.
Date: December 2023
Creator: Arias Gaguancela, Omar Paul
System: The UNT Digital Library
Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans (open access)

Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans

In this study, we have used genetic, cell biological and transcriptomic methods in the nematode C. elegans as a model to examine the impact of glucose supplementation during development. We show that a glucose-supplemented diet slows the rate of developmental progression (termed "glucose-induced developmental delay" or GIDD) and induces the mitochondrial unfolded protein response (UPRmt) in wild-type animals. Mutation in the insulin receptor daf-2 confers resistance to GIDD and UPRmt in a daf-16-dependent manner. We hypothesized that daf-2(e1370) animals alter their metabolism to manage excess glucose. To test this, we used RNA-sequencing which revealed that the transcriptomic profiles of glucose-supplemented wildtype and daf-2(e1370) animals are distinct. From this, we identified a set of 27 genes which are both exclusively upregulated in daf-2(e1370) animals fed a glucose-supplemented diet and regulated by daf-16, including a fatty acid desaturase (fat-5), and two insulin-like peptides (ins-16 and ins-35). Mutation of any of these genes suppresses the resistance of daf-2(e1370) to GIDD. Additionally, double mutation of ins-16 and ins-35 in a daf-2(e1370) background results in an increase in constitutive dauer formation which is suppressed by glucose supplementation. Further investigation of the insulin-like peptides revealed that ins-16 mutation in a wild-type background results in upregulation of …
Date: December 2023
Creator: Nahar, Saifun
System: The UNT Digital Library
Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents (open access)

Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents

As antibiotic resistance has become a major global threat, the World Health Organization has urgently called scientists for alternative strategies for control of bacterial infections. Endolysin, a protein encoded by a phage gene, can degrade bacterial peptidoglycan (PG). Currently, there are three endolysin products in the clinical phase. We, thus, are interested in exploring novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using bioinformatics tools, we identified nine functional domain groups from 250 Streptomyces phages putative endolysins. NootNoot gp34 (transglycosylase; Nt34lys), Nabi gp26 (amidase; Nb26lys), Tribute gp42 (PGRP; Tb42lys), and LazerLemon gp35 (CHAP; LL35lys) were selected for experimental studies. We hypothesized that (1) the proteins of interest will have the ability to degrade PG, and (2) the proteins will be potential antimicrobial agents against ESKAPE safe relatives. The results showed that LL35lys, Nb26lys and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (400 µg/mL) can reduce PG turbidity to 32-40%. The killing assay suggested that Tb42lys possess a boarder range (Escherichia coli, Pseudomonas putida, Acinetobacter baylyi and Klebsiella aerogenes). While Nb26lys can attack Gram-negative bacteria, LL35lys can only reduce the growth of the Gram-positive strains with an MIC90 of 2 …
Date: December 2023
Creator: Maneekul, Jindanuch
System: The UNT Digital Library

Investigating the Molecular Framesworks of Phloem-Cap Fiber Development in Cotton (Gossypium hirsutum)

The current study focuses on the vascular cambium and the reiterative formation of phloem fiber bundles in cotton stems. The role of the TDIF-PXY-WOX pathway was examined in regulating cambial activity and the differentiation of phloem fibers. A study was conducted to identify and characterize the cotton WOX family genes, focusing on WOX4 and WOX14, aiming to identify and analyze their phylogenetic relationships, tissue-specific expression profiles, functional roles, and metabolic consequences. Through a sequence analysis of the Gossypium hirsutum genome, 42 cotton loci were identified as WOX family members. GhWOX4 exhibited a close homology to 7 loci, while GhWOX14 displayed homology with 8 loci. Tissue-specific expression analysis revealed prominent expression patterns of GhWOX4 and GhWOX14 in cotton internodes and roots, suggesting their involvement in vascular tissue development. Functional studies utilizing VIGS (virus-induced gene silencing) demonstrated that the knockdown of GhWOX4 and GhWOX14 resulted in a significant reduction in stem diameter and bast fiber production. This result suggests that secondary phloem fiber development is regulated by GhWOX4 and GhWOX14 genes in cotton. Additionally, the metabolic profiling of VIGS plants revealed significant alterations in amino acids, organic acids, and sugars, with implications for primary metabolic pathways. These findings suggest that GhWOX4 and …
Date: December 2023
Creator: Kaur, Harmanpreet
System: The UNT Digital Library

Proteomic-Based Assessment of Estrogenic Endocrine Disruption in Hyalella azteca

In our studies, we used the environmentally important crustacean Hyalella azteca (H. azteca) as an invertebrate model and 17β-estradiol (E2) as a representative of environmental estrogenic endocrine disrupting compounds (EDCs) for proteomics-based investigations of endocrine disruptions in an aquatic ecosystem. Using liquid chromatography coupled with tandem mass spectrometry, our investigation focused for the first time on the recognition of biological and molecular events affected by E2 exposure with the long-term goal of identifying panels of potential biomarkers for environmental estrogenic endocrine disruption. We analyzed E2-induced changes in protein expressions in female and male H. azteca using label-free quantitative proteomics. With discovery-driven shotgun approach, we identified over 50 proteins that were affected by E2 in a sex-specific manner in our model organism. We selected four E2-regulated proteins (vitellogenin, cuticle protein CPR RR, titin and clumping factor A-like protein) for validation by parallel reaction monitoring-based targeted proteomics. Altogether, our proteomics studies have characterized for the first time E2-triggered endocrine disruption in H. azteca and recognized sex-specific changes in the male and female H. azteca's proteome after aquatic exposure to this estrogen. Through targeted proteomics, we were also able to quantitatively characterize a panel of selected proteins that showed distinctive sex-specific responses to …
Date: December 2023
Creator: Prokai, Marcel Laszlo
System: The UNT Digital Library
Anti-S2 Peptides and Antibodies Binding Effect on Myosin S2 and Anti-S2 Peptide's Ability to Reach the Cardiomyocytes in vivo and Interfere in Muscle Contraction (open access)

Anti-S2 Peptides and Antibodies Binding Effect on Myosin S2 and Anti-S2 Peptide's Ability to Reach the Cardiomyocytes in vivo and Interfere in Muscle Contraction

The anti-S2 peptides, the stabilizer and destabilizer, were designed to target myosin sub-fragment 2 (S2) in muscle. When the peptides are coupled to a heart-targeting molecule, they can reach the cardiomyocytes and interfere with cardiac muscle contraction. Monoclonal antibodies, MF20 and MF30, are also known to interact with light meromyosin and S2 respectively. The MF30 antibody compared to anti-S2 peptides and the MF20 antibody is used as a control to test the central hypothesis that: Both the anti-S2 peptides and antibodies bind to myosin S2 with high affinity, compete with MyBPC, and possibly interact with titin, in which case the anti-S2 peptides have further impact on myosin helicity and reach the heart with the aid of tannic acid to modulate cardiomyocytes' contraction in live mice. In this research, the effects of anti-S2 peptides and antibodies on myosin S2 were studied at the molecular and tissue levels. The anti-myosin binding mechanism to whole myosin was determined based on total internal reflectance fluorescence spectroscopy (TIRFS), and a modified cuvette was utilized to accommodate this experiment. The binding graphs indicated the cooperative binding of the peptides and antibodies with high affinity to myosin. Anti-myosin peptides and antibodies competition with Myosin Binding Protein C …
Date: July 2023
Creator: Quedan, Duaa Mohamad Alhaj Mahmoud
System: The UNT Digital Library

Identification and Characterization of Genes Required for Symbiotic Nitrogen Fixation in Medicago truncatula Tnt1 Insertion Mutants

In this dissertation I am using M. truncatula as a model legume that forms indeterminate nodules with rhizobia under limited nitrogen conditions. I take advantage of an M. truncatula Tnt1 mutant population that provides a useful resource to uncover and characterize novel genes. Here, I focused on several objectives. First, I carried out forward and reverse genetic screening of M. truncatula Tnt1 mutant populations to uncover novel genes involved in symbiotic nitrogen fixation. Second, I focused on reverse genetic screening of two genes, identified as encoding blue copper proteins, and characterization of their mutants' potential phenotypes. Third, I further characterized a nodule essential gene, M. truncatula vacuolar iron transporter like 8 (MtVTL8), which encodes a nodule specific iron transporter. I characterized the expression pattern, expression localization and function of MtVTL8. Additionally, I characterized several residues predicted to be essential to function using a model based on the known crystal structure of Eucalyptus grandis vacuolar iron transporter 1 (EgVIT1), a homologous protein to MtVTL8. I identified several potential essential residues of the MtVTL8 protein, mutagenized them, and through complementation experiments in planta and in yeast assessed functionality of the resulting protein. This helped us to better understand the potential mechanism by …
Date: July 2023
Creator: Cai, Jingya
System: The UNT Digital Library

Role of MicroRNAs and Their Downstream Targets in Zebrafish Thrombopoiesis

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, there is limited information on microRNAs' role in zebrafish thrombopoiesis. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, I identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. Knockdown of three microRNAs, mir-7148, let-7b, and mir-223, by the piggyback method in zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. I then verified these findings in zebrafish larvae after the knockdown of the above microRNAs followed by an arterial laser thrombosis assay. I concluded mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. Furthermore, I explored let-7b downstream genes in thrombocytes detected by RNA-seq analysis and chose 14 targets based on their role in cell differentiation (rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b) that are transcriptional regulators. The qRT-PCR analysis of expression levels the above genes following let-7b knockdown …
Date: May 2023
Creator: Al Qaryoute, Ayah
System: The UNT Digital Library

Developing a Generalizable Two-Input Genetic AND Logic Gate in Arabidopsis thaliana for Multi-Signal Processing

With effective engineering using synthetic biology approaches, plant-based platforms could conceivably be designed to minimize the production costs and wastes of high-value products such as medicines, biofuels, and chemical feedstocks that would otherwise be uneconomical. Additionally, modern agricultural crops could be engineered to be more productive, resilient, or restorative in different or rapidly changing environments and climates. To achieve these complex goals, information-processing genetic devices and circuits containing multiple interacting parts that behave predictably must be developed. A genetic Boolean AND logic gate is a device that computes the presence or absence of two inputs (signals, stimuli) and produces an output (response) only if both inputs are present. Here, we optimized individual genetic components and used synthetic protein heterodimerizing domains to rationally assemble genetic AND logic gates that integrate two hormonal inputs in whole plants. These AND gates produce an output only in the presence of both abscisic acid and auxin, but not when either or neither hormone is present. Furthermore, we demonstrate the AND gate can also integrate two plant stresses, cold temperature and bacterial infection, to produce a specific response. The design principles used here are generalizable, and therefore multiple orthogonal AND gates could be assembled and rationally …
Date: December 2022
Creator: Anderson, Charles Edgar
System: The UNT Digital Library

Developing Informatics Tools and Methods Utilizing Whole Genome Sequencing and Transcription Data to Aid Gene Discovery in Medicago truncatula

Research into the mechanism of symbiotic nitrogen fixation between legumes and rhizobia involves a complex interaction between the organisms, and many genes involved in this remain either uncharacterized or undiscovered. Using forward genetics, mutant plant lines are screened to find new genes without reliance on software-based gene prediction. A large population of Tnt1-mutagenized Medicago truncatula lines is used for this purpose. Herein, the aid of tools like whole genome sequencing (WGS) in this process is explored so that new methods and tools are elucidated. The use of WGS data allows for rapid prediction of all insertions in the genome and has been shown to predict insertion locations that were missed by the TAIL-PCR-based Tnt1 mutant database already in existence. This WGS strategy has been successfully used to find the causal mutations in multiple plant lines. Two WGS strategies are used to analyze insertions in nine sequenced lines and compared with each other and the existing Tnt1 mutant database. It appears that using either WGS method will yield similar results, but the TAIL-PCR-based predictions have much less overlap. The use of the latest R108 genome appears to decrease the degree of disagreement between the methods, while the correlation in the A17 …
Date: December 2022
Creator: Troiani, Taylor
System: The UNT Digital Library

Identification and Characterization of Two Putative Sulfate Transporters Essential for Symbiotic Nitrogen Fixation in Medicago truncatula

The process of symbiotic nitrogen fixation (SNF) in legume root nodules requires the channeling and exchange of nutrients within and between the host plant cells and between the plant cells and their resident rhizobia. Using a forward genetics approach in the Medicago truncatula Tnt1 mutant population followed by whole genome sequencing, two putative sulfate transporter genes, MtSULTR3;5 and MtSULTR3;4b, were identified. To support the hypothesis that the defective putative sulfate transporter genes were the causative mutation for the mutants' phenotypes, the M. truncatula Tnt1 population was successfully reverse screened to find other mutant alleles of the genes. The F2 progeny of mutants backcrossed with wildtype R108 demonstrated co-segregation of mutant phenotypes with the mutant alleles confirming that the mutated mtsultr3;5 and mtsultr3;4b genes were the cause of defective SNF in the mutant lines mutated in the respective genes. This finding was further established for mtsultr3;4b by successful functional complementation of a mutant line defective in the gene with the wildtype copy of MtSULTR3;4b. A MtSULTR3;4b promoter-GUS expression experiment indicated MtSULTR3;4b expression in the vasculature and infected and uninfected plant cells of root nodules. MtSULTR3;4b was found to localize to the autophagosome membrane when expressed in Nicotiana benthamiana. A transcriptomics study …
Date: December 2022
Creator: Pradhan, Rajashree
System: The UNT Digital Library

Medicago truncatula NPF1.7: Structure-Function Assessment and Potential as a Phytohormone Transporter

In Medicago truncatula, the MtNPF1.7 transporter has been shown to be essential for root morphology and nodulation development. The allelic MtNPF1.7 mutants, Mtnip-1 (A497V), Mtnip-3 (E171K), and Mtlatd (W341STOP), show altered lateral root growth and compromised legume-rhizobium symbiosis. To assess the role of a series of distinct amino acids in the transporter's function, in silico structural predictions were combined with in planta complementation of the severely defective Mtnip-1 mutant plants. The findings support hypotheses about the functional importance of the ExxE(R/K) motif including an essential role for the first glutamic acid of the motif in proton(s) and possibly substrate transport. The results also question the existence of a putative TMH4-TMH10 salt bridge, which may not form in MtNPF1.7. Results reveal that a motif conserved among MFS proteins, Motif A, is essential for function. Hypothetically, the Motif A participates in intradomain packing of transmembrane helices and stabilizing one conformation during transport. The mutated valine (A497V) in Mtnip-1 may interfere with the lateral helix. Mutating a residue (L253) on the lateral helix with reduced side chain restored Mtnip-1 function. The predicted residue (Q351) for substrate binding is not essential for protein function. To probe the possibility that MtNPF1.7 transports auxin, two heterologous …
Date: December 2022
Creator: Yu, Yao Chuan
System: The UNT Digital Library
Seeing in the Light: Using Expansion Microscopy to Achieve Super-Resolution in Transmitted Light (open access)

Seeing in the Light: Using Expansion Microscopy to Achieve Super-Resolution in Transmitted Light

Light microscopy is inherently limited in resolution by properties of light such as diffraction and interference to 170-250 nm. Expansion microscopy is a quickly-developing method which achieves super-resolution by using a swellable hydrogel to physically expand biological samples themselves, rather than depending on the properties of fluorophores. This thesis demonstrates that expansion microscopy is a feasible means for achieving super-resolution in transmitted light microscopy modes. Though it has only been used for fluorescence imaging in the past, here I show that samples prepared for expansion microscopy—including liver tissue slices and myofibrillar bundles—are observable using transmitted light. While the majority of the original sample material is removed in the expansion process, the hydrogel retains visible evidence of these samples. These demonstrate increased detail under brightfield microscopy that is useful for characterization. Sarcomeric regions are identifiable by this method and are confirmed by fluorescence imaging. Thus, expansion microscopy is a means to bring super-resolution to transmitted light imaging and is entirely compatible with fluorescence for the localization of proteins of interest.
Date: December 2022
Creator: Migliore, Julia R.
System: The UNT Digital Library

A Sensitive and Robust Machine Learning-Based Framework for Deciphering Antimicrobial Resistance

Antibiotics have transformed modern medicine in manifold ways. However, the misuse and over-consumption of antibiotics or antimicrobials have led to the rise in antimicrobial resistance (AMR). Unfortunately, robust tools or techniques for the detection of potential loci responsible for AMR before it happens are lacking. The emergence of resistance even when a strain lacks known AMR genes has puzzled researchers for a long time. Clearly, there is a critical need for the development of novel approaches for uncovering yet unknown resistance elements in pathogens and advancing our understanding of emerging resistance mechanisms. To aid in the development of new tools for deciphering AMR, here we propose a machine learning (ML) based framework that provides ML models trained and tested on (1) genotypic AMR and phenotypic antimicrobial susceptibility testing (AST) data, which can predict novel resistance factors in bacterial strains that lack already implicated resistance genes; and (2) complete gene set and AST phenotypic data, which can predict the most important genetic loci involved in resistance to specific antibiotics in bacterial strains. The validation of resistance loci prioritized by our ML pipeline was performed using homology modeling and in silico molecular docking.
Date: August 2022
Creator: Sunuwar, Janak
System: The UNT Digital Library

Investigation of Gene Functions in the Cyanotrophic Bacterium Pseudomonas fluorescens NCIMB 11764

Pseudomonas fluorescens NCIMB 11764 (Pf11764) is one of a group of bacteria known as cyanotrophs that exhibit the unique ability to grow on toxic cyanide as the sole nitrogen source. This ability has previously been genetically linked to a conserved cluster of seven genes (Nit1C), the signature gene (nitC) coding for a nitrilase enzyme. Nitrilases convert nitriles to ammonia and a carboxylic acid. Still, for the Pf11764 NitC enzyme (Nit11764), no in vivo substrate has been identified, and the basis of the enzyme's requirement for cyanide growth has remained unclear. Therefore, the gene was cloned and the enzyme was characterized with respect to its structure and function. These efforts resulted in the unique discovery that, aside from its nitrilase activity, Nit11764 exhibits nuclease activity towards both DNA and RNA. This ability is consistent with computer analysis of the protein providing evidence of a preponderance of amino acids with a high probability for RNA binding. A Nit11764 knock-out mutant was shown to exhibit a higher sensitivity to both cyanide (KCN) and mitomycin C, both known to induce chromosomal damage. Thus, the overall conclusion is that Nit11764, and likely the entire Nit1C gene cluster, functions as a possible repair mechanism for overcoming …
Date: May 2022
Creator: Gullapalli, Jaya Swetha
System: The UNT Digital Library

Role of DEFECTIVE IN SYSTEMIC DEFENSE INDUCED BY ABIETANE DITERPENOID 1 (DSA1), a Putative O-Fucosyltransferase, in Plant Systemic Acquired Resistance (SAR)

Dehydroabietinal (DA), an abietane diterpenoid, was previously demonstrated to be a potent activator of systemic acquired resistance (SAR). DA also promotes flowering time in Arabidopsis thaliana by repressing expression of the flowering repressor FLOWERING LOCUS C (FLC) while simultaneously upregulating expression of FLOWERING LOCUS D (FLD), FLOWERING LOCUS VE (FVE) and RELATIVE OF EARLY FLOWERING 6 (REF6), a set of flowering time promoters. To further understand the mechanism underlying signaling by abietane diterpenoids, Arabidopsis mutants exhibiting reduced responsiveness to abietane diterpenoids were identified. One such mutant plant, ems2/7, exhibited SAR-deficiency and delayed flowering, which were found to be associated with two independent, but linked loci. The gene responsible for the SAR defect in ems2/7 was identified as DEFECTIVE IN SYSTEMIC DEFENSE INDUCED BY ABIETANE DITERPENOID 1 (DSA1). Similar to the missense mutant dsa1-1 identified in the mutant screen, the T-DNA insertion bearing null allele dsa1-2 exhibited SAR deficiency that could be complemented by a genomic copy of DSA1. The gene responsible for the delayed flowering phenotype of ems2/7 remains to be identified. DSA1 encodes a protein that is homologous to human protein O-fucosyltransferase 2. DSA1 is required for long-distance transport of the SAR signal. It is hypothesized that DSA1 is …
Date: May 2022
Creator: Mohanty, Devasantosh
System: The UNT Digital Library

Manipulation of Lipid Droplet Biogenesis for Enhanced Lipid Storage in Arabidopsis thaliana and Nicotiana benthamiana

In this study, I examined the use of mouse (Mus musculus) Fat Specific Protein 27 (FSP27) ectopically expressed in Arabidopsis thaliana and Nicotiana benthamiana as a means to increase lipid droplet (LD) presence in plant tissues. In mammalian cells, this protein induces cytoplasmic LD clustering and fusion and helps prevent breakdown of LDs contributing to the large, single LD that dominates adipocytes. When expressed in Arabidopsis thaliana and Nicotiana benthamiana, FSP27 retained its functionality and supported the accumulation of numerous and large cytoplasmic LDs, although it failed to produce the large, single LD that typifies adipose cells. FSP27 has no obvious homologs in plants, but a search for possible distant homologs in Arabidopsis returned a Tudor/PWWP/MBT protein coded for by the gene AT1G80810 which for the purposes of this study, we have called LIPID REGULATORY TUDOR DOMAIN CONTAINING GENE 1 (LRT1). As a possible homolog of FSP27, LRT1 was expected to have a positive regulatory effect on LDs in cells. Instead, a negative regulatory effect was observed in which disruption of the gene induced an accumulation of cytoplasmic LDs in non-seed tissue. A study of lrt1 mutants demonstrated that disruption this gene is the causal factor of the cytoplasmic LD …
Date: December 2021
Creator: Price, Ann Marie
System: The UNT Digital Library

Quantifying the Effects of Single Nucleotide Changes in the TATA Box of the Cauliflower Mosaic Virus 35S Promoter on Gene Expression in Arabidopsis thaliana

Synthetic biology is a rapidly growing field that aims to treat cellular biological networks in an analogous way to electrical circuits. However, the field of plant synthetic biology has not grown at the same pace as bacterial and yeast synthetic biology, leaving a dearth of characterized tools for the community. Due to the need for tools for the synthetic plant biologist, I have endeavored to create a library of well-characterized TATA box variants in the cauliflower mosaic virus (CaMV) 35S promoter using the standardized assembly method Golden Braid 2.0. I introduced single nucleotide changes in the TATA box of the CaMV 35S promoter, a genetic part widely used in plant gene expression studies and agricultural biotechnology. Using a dual-luciferase reporter system, I quantified the transcriptional strength of the altered TATA box sequences and compared to the wild-type sequence, both in transient protoplast assays and stable transgenic Arabidopsis thaliana plants. The library of TATA-box modified CaMV 35S promoters with varying transcriptional strengths created here can provide the plant synthetic biology community with a series of modular Golden Braid-adapted genetic parts that can be used dependably and reproducibly by researchers to fine-tune gene expression levels in complex, yet predictable, synthetic genetic circuits.
Date: December 2021
Creator: Amack, Stephanie Carolina
System: The UNT Digital Library

Effect of Phosphorus Starvation on Metabolism and Spatial Distribution of Phosphatidylcholine in Medicago truncatula Wild-Type and PDIL3 Genotypes

Symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. Within nodule cells, N-fixing rhizobia are surrounded by plant-derived symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. First, I investigated the impact of P deprivation on wild-type Medicago truncatula plants. My observations that plants had impaired SNF activity, reduced growth, and accumulated less phosphate in P-deficient tissues (leaves, roots and nodules) is consistent with those of similar previous studies. Galactolipids decreased with increase in phospholipids in all P-starved organs. Matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MSI) of phosphatidylcholine (PC) species in nodules showed that under low P environments distributions of some PC species changed, indicating that membrane lipid remodeling during P stress is not uniform across the nodule. Secondly, a metabolomics study was carried out to test the alterations in the metabolic profile of the nodules in P-stress. GC-MS based untargeted metabolomics showed increased levels of amino acids and sugars and decline in amounts of organic acids in P deprived nodules. Subsequently, …
Date: August 2021
Creator: Dokwal, Dhiraj
System: The UNT Digital Library

Exploring Flavonoid Glycosylation in Kudzu (Pueraria lobata)

The isoflavones in kudzu roots, especially the C-glycosylated isoflavone puerarin, have been linked to many health benefits. Puerarin contains a carbon-carbon glycosidic bond that can withstand hydrolysis. The C-glycosylation reaction in the biosynthesis of puerarin has not been thoroughly investigated, with conflicting reports suggesting that it could take place on daidzein, isoliquiritigenin, or 2,7,4ʹ-trihydroxyisoflavanone. Kudzu species were identified for use in comparative transcriptomics. A non-puerarin producing kudzu was identified as Pueraria phaseoloides and a puerarin producing kudzu was identified as Pueraria montana lobata. Through the use of the plant secondary product glycosyltransferase (PSPG) motif, glycosyltransferases (UGTs) were identified from the transcriptomes. The UGTs that had higher digital expression in P. m. lobata were examined further using additional tools to home in on the UGT that could be responsible for puerarin biosynthesis. One of the UGTs identified, UGT71T5, had previously been characterized from kudzu as a C-glycosyltransferase involved in puerarin biosynthesis through in vitro enzyme activity (with daidzein) and a gain of function approach in soybean hairy roots. Previous studies have not supported the end-product of a pathway such as daidzein as the target for C-glycosylation, and no genetic analysis of UGT function had been conducted in kudzu. The activity of …
Date: August 2021
Creator: Adolfo, Laci Michelle
System: The UNT Digital Library

Studies on Intrinsic Coagulation Pathway of Zebrafish

In the past couple of decades, the zebrafish has been widely used to study hemostatic disorders. In this study, we generated a CRISPR/Cas9 mediated zebrafish mutant that contains a 55-nucleotide insertion in exon 29 of the von Willebrand factor (vwf) gene. The mutants had impaired ristocetin-mediated agglutination of whole blood, prolonged PTT and more bleeding in the lateral incision compared to wild-type fish. The bleeding phenotype observed here is similar to the phenotype observed in vwf knockout mice and patients with von Willebrand disease (VWD). The mutant model developed here can thus be used for exploring the role of Vwf in angiogenesis and for developing gene therapy. The deficiency of VWF causes VWD and the etiology remains unknown in 30% of Type 1 VWD cases. Previous studies have identified that the ABO blood group and ST3GAL4 (glycosyltransferases) are involved in the regulation of VWF levels. Since VWF is heavily glycosylated, we hypothesized that other glycosyltransferases may also be involved in regulating VWF. We performed a knockdown screen of 234 glycosyltransferase genes and identified 14 genes that altered Vwf levels. The sequencing of these genes in Type 1 VWD patients could help identify novel mutations to decipher the molecular basis for …
Date: August 2021
Creator: Iyer, Neha
System: The UNT Digital Library

Studies on the Fibrinolytic Pathway in Zebrafish

Fibrinolysis pathway is an important mechanism for dissolution of fibrin clot by the action of plasmin which is formed from plasminogen, a zymogen via the action of plasminogen activators, i.e. tissue plasminogen activator and urinary plasminogen activator. The regulation of fibrinolysis system in vivo is maintained by plasminogen activators and natural inhibitors i.e. α2-antiplasmin, α2-macroglobulin, Thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor 1 and 2 (PAI-1and PAI-2). There are several fibrinolytic assays developed for human plasma but there are no reports describing fibrinolytic assay using zebrafish plasma. In this study, a fibrinolytic assay via using small amount of zebrafish plasma was developed. This assay was performed under different conditions; one by the addition of exogenous tissue plasminogen activator alone to the pooled zebrafish plasma along with calcium chloride and thromboplastin, second Dade ACTIN was used instead of tissue plasminogen activator and third Dade ACTIN along with thromboplastin was used. Epsilon amino caproic acid (EACA), a synthetic antifibrinolytic agent was used at different concentrations to inhibit fibrinolysis successfully. Similar experiments were performed on human plasma as well to check the applicability of the assay to humans and positive results were obtained. Furthermore, knockdown of tissue plasminogen activator and plasminogen genes …
Date: August 2021
Creator: Gill, Jaspreet Kaur
System: The UNT Digital Library

Studies on Tissue Factor Pathway Inhibitor in Zebrafish

Tissue Factor Pathway Inhibitor (TFPI) is an anticoagulant protein containing three Kunitz domains, K1, K2 and K3. K1 inhibits Factor VIIa, K2 inhibits Factor Xa, and K3 enhances the Factor Xa inhibition by its interaction with Protein S. Since zebrafish is an excellent genetic model, we hypothesized that TFPI regulation could be studied using this model. As a first step, we confirmed the presence of tfpia in zebrafish. Subsequently, we performed knockdown of tfpia, and knockout of tfpia in K3 domain using CRISPR/Cas9. Both the tfpia knockdown and tfpia homozygous deletion mutants showed increased coagulation activities. Our data suggest that zebrafish tfpia is an orthologue for human TFPIα, and silencing it results in a thrombotic phenotype. We then optimized the piggyback knockdown method, where we could simultaneously piggyback 3 or 6 ASOs corresponding to 3 or 6 genes, respectively, using one VMO. These multiple gene knockdowns will increase the efficiency of genome-wide knockdowns. Since there are no studies on chromatin remodeling that control TFPI expression, we hypothesized that the genome-wide knockdowns of the Chromatin Binding and Regulatory Proteins (CBRPs) in zebrafish could help identify novel tfpia gene regulators. We chose 69 CBRPs and subjected them to simultaneous gene knockdowns. Our …
Date: August 2021
Creator: Raman, Revathi
System: The UNT Digital Library
The Development of Potential Therapeutic Anti-Myosin S2 Peptides that Modulate Contraction and Append to the Heart Homing Adduct Tannic Acid without Noticeable Effect on Their Functions (open access)

The Development of Potential Therapeutic Anti-Myosin S2 Peptides that Modulate Contraction and Append to the Heart Homing Adduct Tannic Acid without Noticeable Effect on Their Functions

This dissertation aimed to explore the S2 region with an attempt to modulate its elasticity in order to tune the contraction output. Two peptides, the stabilizer and destabilizer, showed high potential in modifying the S2 region at the cellular level, thus they were prepared for animal model testing. In this research, (i) S2 elasticity was studied, and the stabilizer and destabilizer peptides were built to tune contraction output through modulating S2 flexibility; (ii) the peptides were attached to heart homing adducts and the bond between them was confirmed; and (iii) it was shown that minor changes were imposed on the modulating peptides' functionality upon attaching to the heart homing adducts. S2 flexibility was confirmed through comparing it to other parts of myosin using simulated force spectroscopy. Modulatory peptides were built and computationally tested for their efficacy through interaction energy measurement, simulated force spectroscopy and molecular dynamics; these were attached to heart homing adducts for heart delivery. Interaction energy tests determined that tannic acid (TA) served well for this purpose. The stoichiometry of the bond between the TA and the modulating peptides was confirmed using mass spectroscopy. The functionality of the modulating peptides was shown to be unaltered through expansion microscopy …
Date: May 2021
Creator: Qadan, Motamed
System: The UNT Digital Library