Ozone Pollution of Shale Gas Activities in North Texas (open access)

Ozone Pollution of Shale Gas Activities in North Texas

The effect of shale gas activities on ground-level ozone pollution in the Dallas-Fort Worth area is studied in detail here. Ozone is a highly reactive species with harmful effects on human and environment. Shale gas development, or fracking, involves activities such as hydraulic fracturing, drilling, fluid mixing, and trucks idling that are sources of nitrogen oxides (NOX) and volatile organic compounds (VOC), two of the most important precursors of ozone. In this study two independent approaches have been applied in evaluating the influences on ozone concentrations. In the first approach, the influence of meteorology were removed from ozone time series through the application of Kolmogorov-Zurbenko low-pass filter, logarithmic transformation, and subsequent multi-linear regression. Ozone measurement data were acquired from Texas Commission on Environmental Quality (TCEQ) monitoring stations for 14 years. The comparison between ozone trends in non-shale gas region and shale gas region shows increasing ozone trends at the monitoring stations in close proximity to the Barnett Shale activities. In the second approach, the CAMx photochemical model was used to assess the sensitivity of ozone to the NOX and VOC sources associated with shale oil and gas activities. Brute force method was applied on Barnett Shale and Haynesville Shale emission …
Date: May 2016
Creator: Ahmadi, Mahdi
System: The UNT Digital Library
Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods (open access)

Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods

Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion …
Date: May 2016
Creator: Wu, Min
System: The UNT Digital Library
Feasibility of a New Technique to Determine Dynamic Tensile Behavior of Brittle Materials (open access)

Feasibility of a New Technique to Determine Dynamic Tensile Behavior of Brittle Materials

Dynamic tensile characterization of geo-materials is critical to the modeling and design of protective structures that are often made of concrete. One of the most commonly used techniques currently associated with this type of testing is performed with a Kolsky bar and is known as the spall technique. The validity of the data from the spall technique is highly debated because the necessary boundary conditions for the experiment are not satisfied. By using a technique called pulse shaping, a new “controlled” spall technique was developed to satisfy all boundary conditions so that the analyzed data may be useful in modeling and design. The results from this project were promising and show the potential to revolutionize the way Kolsky bar testing is performed.
Date: May 2016
Creator: Dean, Andrew W.
System: The UNT Digital Library
Field Validation of Zero Energy Lab Water-to-Water Ground Coupled Heat Pump Model (open access)

Field Validation of Zero Energy Lab Water-to-Water Ground Coupled Heat Pump Model

Heat pumps are a vital part of each building for their role in keeping the space conditioned for the occupant. This study focuses on developing a model for the ground-source heat pump at the Zero Energy lab at the University of North Texas, and finding the minimum data required for generating the model. The literature includes many models with different approaches to determine the performance of the heat pump. Each method has its pros and cons. In this research the equation-fit method was used to generate a model based on the data collected from the field. Two experiments were conducted for the cooling mode: the first one at the beginning of the season and the second one at the peak of the season to cover all the operation conditions. The same procedure was followed for the heating mode. The models generated based on the collected data were validated against the experiment data. The error of the models was within ±10%. The study showed that the error could be reduced by 20% to 42% when using the field data to generate the model instead of the manufacturer’s catalog data. Also it was found that the minimum period to generate the cooling …
Date: May 2016
Creator: Abdulameer, Saif
System: The UNT Digital Library
Performance Evaluation of UNT Apogee Stadium Wind Turbines (open access)

Performance Evaluation of UNT Apogee Stadium Wind Turbines

The following report chronicles the University of North Texas Wind Turbine Project at Apogee Stadium. The timeline of events will include the feasibility study conducted by and for the university, grant awards from the Texas State Energy Conservation Office to fund the project, and a three-year sample of real time performance data since installation. The purpose of this case study is to compare the energy generation estimates by various stakeholders to the measured energy generation using a new but uniform performance relationship. In order to optimize energy generation in wind turbine generator systems, the most common wind speeds measured at the site should also be the most efficient wind speeds at which the wind turbine can convert the kinetic energy in the wind into mechanical energy and ultimately electrical energy. The tool used to convey this relationship will be a figure plotting the wind speed profile against the efficiency curve of the wind turbine. Applying this relationship tool to the UNT Apogee Stadium wind turbines provided valuable results. The most common wind speeds at Apogee Stadium are not the most efficient wind speed for the turbine. Also, the most common wind speeds were near the lower limit of the wind …
Date: May 2016
Creator: McCary, William D., III
System: The UNT Digital Library
Conceptual Framework for the Development of an Air Quality Monitoring Station in Denton, Texas (open access)

Conceptual Framework for the Development of an Air Quality Monitoring Station in Denton, Texas

Denton, Texas consistently reaches ozone nonattainment levels. This has led to a large focus of air pollution monitoring efforts in the region, with long-range transport being explored as a key contributor. For this study, the University of North Texas Discovery Park campus was chosen as a prospective location for an extensive air quality monitoring station. Sixteen years of ozone and meteorological data for five state-run monitoring sites within a 25 mile radius, including the nearest Denton Airport site, was gathered from TCEQ online database for the month of April for the years 2000 to 2015. The data was analyzed to show a historical, regional perspective of ozone near the proposed site. The maximum ozone concentration measured at the Denton Airport location over the 16 year period was measured at 96 ppb in 2001. Experimental ozone and meteorological measurements were collected at the Discovery Park location from March 26 to April 3 and April 8 to April, 2016 and compared to the Denton Airport monitoring site. A time lag in ozone trends and an increase in peak ozone concentrations at the proposed location were observed at the proposed site in comparison to the Denton Airport site. Historical and experimental meteorological data …
Date: August 2016
Creator: Boling, Robyn
System: The UNT Digital Library
Feasibility Study of Consolidation by Direct Compaction and Friction Stir Processing of Commercially Pure Titanium Powder (open access)

Feasibility Study of Consolidation by Direct Compaction and Friction Stir Processing of Commercially Pure Titanium Powder

Commercially pure titanium can take up to six months to successfully manufacture a six-inch in diameter ingot in which can be shipped to be melted and shaped into other useful components. The applications to the corrosion-resistant, light weight, strong metal are endless, yet so is the manufacturing processing time. At a cost of around $80 per pound of certain grades of titanium powder, the everyday consumer cannot afford to use titanium in the many ways it is beneficial simply because the number of processing steps it takes to manufacture consumes too much time, energy, and labor. In this research, the steps it takes from the raw powder form to the final part are proposed to be reduced from 4-8 steps to only 2 steps utilizing a new technology that may even improve upon the titanium properties at the same time as it is reducing the number of steps of manufacture. The two-step procedure involves selecting a cylindrical or rectangular die and punch to compress a small amount of commercially pure titanium to a strong-enough compact for transportation to the friction stir welder to be consolidated. Friction stir welding invented in 1991 in the United Kingdom uses a tool, similar to …
Date: August 2016
Creator: Nichols, Leannah Marie
System: The UNT Digital Library
Quantification of Human Thermal Comfort for Residential Building's Energy Saving (open access)

Quantification of Human Thermal Comfort for Residential Building's Energy Saving

Providing conditioned and fully controlled room is the final goal for having a comfortable building. But on the other hand making smart controllers to provide the required cooling or heating load depending on occupants' real time feeling is necessary. This study has emphasized on finding a meaningful and steady state parameter in human body that can be interpreted as comfort criterion which can be expressed as the general occupants' sensation through their ambient temperature. There are lots of researches on human physiological behavior in different situations and also different body parts reaction to the same ambient situation. Body parts which have the biggest reliable linear fluctuation to the changes are the best subject for this research. For these tests, wrist and palm have been selected and their temperatures on different people have been measured accurately with thermal camera to follow the temperature trend on various comfort levels. It is found that each person reaches to his own unique temperature on these two spots, when he/ she feels comfortable, or in other word each person's body temperature is a precise nominate for comfort feeling of that individual. So in future by having this unique comfort parameter and applying them to the …
Date: August 2016
Creator: Sharifani, Pooya
System: The UNT Digital Library
Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys (open access)

Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys

Joining two dissimilar metals, specifically Mg and Al alloys, using conventional welding techniques is extraordinarily challenging. Even when these alloys are able to be joined, the weld is littered with defects such as cracks, cavities, and wormholes. The focus of this project was to use friction stir welding to create a defect-free joint between Al 2139 and Mg WE43. The stir tool used in this project, made of H13 tool steel, is of fixed design. The design included an 11 mm scrolled and concave shoulder in addition to a 6 mm length pin comprised of two tapering, threaded re-entrant flutes that promoted and amplified material flow. Upon completion of this project an improved experimental setup process was created as well as successful welds between the two alloys. These successful joints, albeit containing defects, lead to the conclusion that the tool used in project was ill fit to join the Al and Mg alloy plates. This was primarily due to its conical shaped pin instead of the more traditional cylindrical shaped pins. As a result of this aggressive pin design, there was a lack of heat generation towards the bottom of the pin even at higher (800-1000 rpm) rotation speeds. This …
Date: December 2016
Creator: Reese, Gregory A
System: The UNT Digital Library
Cyclic Polarization of AA 3102 in Corrosive Electrolytes Containing Sodium Chloride and Ammonium Sulfate (open access)

Cyclic Polarization of AA 3102 in Corrosive Electrolytes Containing Sodium Chloride and Ammonium Sulfate

Corrosion of all aluminum microchannel heat exchangers present a challenge in automotive and heating, ventilation, and air conditioning (HVAC) industries. Reproducibility of Salt Water Acetic Acid Test (SWAAT) has been questioned and a need to new corrosion tests with better reproducibility has risen. Cyclic polarization, that is an electrochemical test, was explored for its suitability for the assessment of AA 3102 tube material that is currently a popular aluminum alloy used in manufacturing of heat exchanger. Corrosive electrolytes containing 3.5 % sodium chloride with 0.5 % ammonium sulfate (high chloride) or 0.5 % sodium chloride with 3.5 % ammonium sulfate (high sulfate) at their pH or acidic (pH=4) were used to measure corrosion potential (Ecorr), protection potential (Epp), pitting potential (Epit), Tafel constants (βa and βc), corrosion rate (mpy). Corrosive electrolyte used in SWAAT test (4.2% Sea Salt at pH 2.9) was also used to compare corrosion resistance of AA 3102 in SWAAT electrolyte compared to the other electrolytes used in this research. Scanning electron microscopy (SEM) was used to observe and document sample surface corrosion damage after each electrochemical test on all samples. Results of the cyclic polarization tests indicated that SWAAT electrolytes was the most aggressive electrolyte resulting …
Date: December 2016
Creator: Dorreyatim, Mohammad
System: The UNT Digital Library
Modeling of Fracture Toughness of Magnesium Alloy WE43 Before and After Friction Stir Processing (open access)

Modeling of Fracture Toughness of Magnesium Alloy WE43 Before and After Friction Stir Processing

Magnesium alloys are a popular research topic for structural applications because they have a lower density than conventional structural materials, including steel, titanium, and aluminum; however, the reliability and safety of their mechanical properties must be further proven. An important mechanical property for this purpose is fracture toughness, which is the measure of the material's resistance to crack propagation. In this study, a model of an experiment to investigate the fracture toughness of a magnesium alloy WE43 before and after friction stir processing (FSP) is developed, and the results are compared to those produced by a digital image correlation (DIC) system during an experiment from another paper. The model results of the material before FSP matched well with the DIC results, but the model of the material after FSP only partially matches the DIC results. In addition, a theoretical approach to calculating the standard fracture toughness value, KIc, from the modeling results is proposed, and is found to be a conservative approach.
Date: December 2016
Creator: Lipscomb, Celena Andrea
System: The UNT Digital Library
Particle Image Velocimetry Sensitivity Analysis Using Automatic Differentiation (open access)

Particle Image Velocimetry Sensitivity Analysis Using Automatic Differentiation

A particle image velocimetry (PIV) computer software is analyzed in this work by applying automatic differentiation on it. We create two artificial images that contained particles that where moved with a known velocity field over time. These artificial images were created with parameters that we would have on real PIV experiments. Then we applied a PIV software to find the velocity output vectors. As we mentioned before, we applied automatic differentiation through all the algorithm to track the derivatives of the output vectors regarding interesting parameters declared as inputs. By analyzing these derivatives we analyze the sensitivity of the output vectors to changes on each one of the parameters analyzed. One of the most important derivatives calculated in this project was the derivative of the output regarding the image intensity. In future work we plan to use this derivative combined with the intensity probability distribution of each image pixel, to find PIV uncertainties. If we achieve this goal we will find an uncertainty method that will save computational power and will give uncertainty values with computer accuracy.
Date: December 2016
Creator: Grullon Varela, Rodolfo Antonio
System: The UNT Digital Library
Programmable Mechanical Metamaterials with Negative Poisson's Ratio and Negative Thermal Expansion (open access)

Programmable Mechanical Metamaterials with Negative Poisson's Ratio and Negative Thermal Expansion

Programmable matter is a material whose properties can be programmed to achieve particular shapes or mechanical properties upon command. This is an essential technique that could one day lead to morphing aircraft and ground vehicles. Metamaterials are the rationally designed artificial materials whose properties are not observed in nature. Their properties are typically controlled by geometry rather than chemical compositions. Combining metamaterials with a programmable function will create a new area in the intelligent material design. The objective of this study is to design and demonstrate a tunable metamaterial and to investigate its thermo-mechanical behavior. An integrated approach to the metamaterial design was used with analytical modeling, numerical simulation, and experimental demonstration. The dynamic thermo-mechanical analysis was used to measure base materials' modulus and thermal expansion coefficient as a function of temperature. CPS, the unit cell of the metamaterial, is composed of circular holes and slits. By decomposing kinematic rotation of the arm and elastic deformation of a bi-material hinge, thermo-mechanical constitutive models of CPS were developed and it was extended to 3D polyhedral structures for securing isotropic properties. Finite element based numerical simulations of CPS and polyhedral models were conducted for comparison with the analytical model. 3D printing of …
Date: December 2016
Creator: Heo, Hyeonu
System: The UNT Digital Library
Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding (open access)

Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding

This research demonstrates the use of friction stir welding (FSW) to join dissimilar (Al-Mg) metal alloys. The main challenges in joining different, dissimilar metal alloys is the formation of brittle intermetallic compounds (IMCs) in the stir zone affecting mechanical properties of joint significantly. In this present study, FSW joining process is used to join aluminum alloy AA2139 and magnesium alloy WE43. The 9.5 mm thick plates of AA2139 and WE43 were friction stir butt welded. Different processing parameters were used to optimize processing parameters. Also, various weldings showed a crack at interface due to formation of IMCs caused by liquation during FSW. A good strength sound weld was obtained using processing parameter of 1200 rev/min rotational speed; 76.2 mm/min traverse speed; 1.5 degree tilt and 0.13 mm offsets towards aluminum. The crack faded away as the tool was offset towards advancing side aluminum. Mostly, the research was focused on developing high strength joint through microstructural control to reduce IMCs thickness in Al-Mg dissimilar weld joint with optimized processing parameter and appropriate tool offset.
Date: December 2016
Creator: Poudel, Amir
System: The UNT Digital Library
Enhanced Coarse-Graining for Multiscale Modeling of Elastomers (open access)

Enhanced Coarse-Graining for Multiscale Modeling of Elastomers

One of the major goal of the researchers is to reduce energy loss including nanoscale to the structural level. For instance, around 65% of fuel energy is lost during the propulsion of the automobiles, where 11% of the loss happens at tires due to rolling friction. Out of that tire loss, 90 to 95% loss happens due to hysteresis of tire materials. This dissertation focuses on multiscale modeling techniques in order to facilitate the discovery new rubber materials. Enhanced coarse-grained models of elastomers (thermoplastic polyurethane elastomer and natural rubber) are constructed from full-atomic models with reasonable repeat units/beads associated with pressure-correction for non-bonded interactions of the beads using inverse Boltzmann method (IBM). Equivalent continuum modeling is performed with volumetric/isochoric loading to predict macroscopic mechanical properties using molecular mechanics (MM) and molecular dynamics (MD). Glass-transition and rate-dependent mechanical properties along with hysteresis loss under uniaxial deformation is predicted with varying composition of the material. A statistical non-Gaussian treatment of a rubber chain is performed and linked with molecular dynamics in order predict hyperelastic material constants without fitting with any experimental data.
Date: December 2016
Creator: Uddin, Md Salah
System: The UNT Digital Library
Modeling of Hexagonal Boron Nitride Filled Bismalemide Polymer Composites for Thermal and Electrical Properties for Electronic Packaging (open access)

Modeling of Hexagonal Boron Nitride Filled Bismalemide Polymer Composites for Thermal and Electrical Properties for Electronic Packaging

Due to the multi-tasking and miniaturization of electronic devices, faster heat transfer is required from the device to avoid the thermal failure. Die-attached polymer adhesives are used to bond the chips in electronic packaging. These adhesives have to hold strong mechanical, thermal, dielectric, and moisture resistant properties. As polymers are insulators, heat conductive particles are inserted in it to enhance the thermal flow with an attention that there would be no electrical conductivity as well as no reduction in dielectric strength. This thesis focuses on the characterization of polymer nanocomposites for thermal and electrical properties with experimental and computational tools. Platelet geometry of hexagonal boron nitride offers highly anisotropic properties. Therefore, their alignment and degree of orientation offers tunable properties in polymer nanocomposites for thermal, electrical, and mechanical properties. This thesis intends to model the anisotropic behavior of thermal and dielectric properties using finite element and molecular dynamics simulations as well as experimental validation.
Date: December 2016
Creator: Uddin, Md Salah
System: The UNT Digital Library
Application of High Entropy Alloys in Stent Implants (open access)

Application of High Entropy Alloys in Stent Implants

High entropy alloys (HEAs) are alloys with five or more principal elements. Due to these distinct concept of alloying, the HEA exhibits unique and superior properties. The outstanding properties of HEA includes higher strength/hardness, superior wear resistance, high temperature stability, higher fatigue life, good corrosion and oxidation resistance. Such characteristics of HEA has been significant interest leading to researches on these emerging field. Even though many works are done to understand the characteristic of these HEAs, very few works are made on how the HEAs can be applied for commercial uses. This work discusses the application of High entropy alloys in biomedical applications. The coronary heart disease, the leading cause of death in the United States kills more than 350,000 persons/year and it costs $108.9 billion for the nation each year in spite of significant advancements in medical care and public awareness. A cardiovascular disease affects heart or blood vessels (arteries, veins and capillaries) or both by blocking the blood flow. As a surgical interventions, stent implants are deployed to cure or ameliorate the disease. However, the high failure rate of stents has lead researchers to give special attention towards analyzing stent structure, materials and characteristics. Many works related to …
Date: May 2017
Creator: Alagarsamy, Karthik
System: The UNT Digital Library
Sustainable Ecofriendly Insulation Foams for Disaster Relief Housing (open access)

Sustainable Ecofriendly Insulation Foams for Disaster Relief Housing

Natural disasters are affecting a significant number of people around the world. Sheltering is the first step in post-disaster activities towards the normalization of the affected people's lives. Temporary housing is being used in these cases until the construction of permanent houses are done. Disposal of temporary housing after use is leading to a significant environmental impact because most of them are filled with thermally insulative polymer foams that do not degrade in a short period. To reduce these problems this work proposes to use foams made with compostable thermoplastic polylactic acid (PLA) and degradable kenaf core as filler materials; these foams are made using CO2 as blowing agent for insulation purposes. Foams with PLA and 5%, 10% and 15% kenaf core were tested. Different properties and their relations were examined using differential scanning calorimetry (DSC), thermal conductivity, mechanical properties, scanning electron microscopy (SEM), x-ray μ-computed tomography (μ-CT) and building energy simulations were done using Energy Plus by NREL. The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity display a noticeable improvement.
Date: May 2017
Creator: Chitela, Yuvaraj Reddy
System: The UNT Digital Library
Effectiveness of Fillers for Corrosion Protection of AISI-SAE 1018 Steel in Sea Salt Solution (open access)

Effectiveness of Fillers for Corrosion Protection of AISI-SAE 1018 Steel in Sea Salt Solution

Corrosion represents the single most frequent cause for product replacement or loss of product functionality with a 5% coat to the industrial revenue generation of any country in this dissertation the efficacy of using filled coatings as a protection coating are investigated. Fillers disrupt the polymer-substrate coating interfacial area and lead to poor adhesion. Conflicting benefits of increasing surface hardness and corrosion with long term durability through loss of adhesion to the substrate are investigated. The effects of filler type, filler concentration and exposure to harsh environments such as supercritical carbon dioxide on salt water corrosion are systematically investigated. The constants maintained in the design of experiments were the substrate, AISI-SAE 1018 steel substrate, and the corrosive fluid synthetic sea salt solution (4.2 wt%) and the polymer, Bismaleimide (BMI). Adhesion strength through pull-off, lap shear and shear peel tests were determined. Corrosion using Tafel plots and electrochemical impedance spectroscopy was conducted. Vickers hardness was used to determine mechanical strength of the coatings. SEM and optical microscopy were used to examine dispersion and coating integrity. A comparison of fillers such as alumina, silica, hexagonal boron nitride, and organophilic montmorillonite clay (OMMT) at different concentrations revealed OMMT to be most effective with …
Date: May 2017
Creator: Al-Shenawa, Amaal
System: The UNT Digital Library
Investigation on the Effects of Indoor Temperature Modulations on Building Energy Usage and Human Thermal Comfort (open access)

Investigation on the Effects of Indoor Temperature Modulations on Building Energy Usage and Human Thermal Comfort

Energy efficiency in the operation of buildings is becoming increasingly important with a growing emphasis on sustainability and reducing environmental impacts of irresponsible energy usage. Improvements have been made both on the technology side of energy efficiency and on the human behavior side. However, when changing human behavior, it is critical to find energy conservation measures that will maintain comfort for occupants. This paper analyzes how this can be done by implementing a modulating temperature schedule based on the concept of alliesthesia, which states that pleasure is observed in transient states. EnergyPlus simulations were used to show that in cooling applications, this type of scheduling can produce significant energy savings. However, energy savings are not predicted for the same type of scheduling for heating applications. Thermal comfort was examined with a cooling experiment and a separate heating experiment, each lasting 45 minutes and taking place during the corresponding season. The experiments showed that modulating temperatures can cause occupants to experience more pleasure than if the temperature remained constant in a cooled space, whereas modulating temperatures had a negative impact on comfort relative to the constant temperature in the heated space. This presents evidence for an ideal opportunity for cooling applications …
Date: May 2017
Creator: Traylor, Caleb
System: The UNT Digital Library
Investigation of a Novel Vapor Chamber for Efficient Heat Spreading and Removal for Power Electronics in Electric Vehicles (open access)

Investigation of a Novel Vapor Chamber for Efficient Heat Spreading and Removal for Power Electronics in Electric Vehicles

This work investigated a novel vapor chamber for efficient heat spreading and heat removal. A vapor chamber acting as a heat spreader enables for more uniform temperature distribution along the surface of the device being cooled. First, a vapor chamber was studied and compared with the traditional copper heat spreader. The thickness of vapor chamber was kept 1.35 mm which was considered to be ultra-thin vapor chamber. Then, a new geometrical model having graphite foam in vapor space was proposed where the graphite foam material was incorporated in vapor space as square cubes. The effects of incorporating graphite foam in vapor space were compared to the vapor chamber without the embedded graphite foam to investigate the heat transfer performance improvements of vapor chamber by the high thermal conductivity graphite foam. Finally, the effects of various vapor chamber thicknesses were studied through numerical simulations. It was found that thinner vapor chamber (1.35 mm thickness) had better heat transfer performance than thicker vapor chamber (5 mm thickness) because of the extreme high effective thermal conductivities of ultra-thin vapor chamber. Furthermore, the effect of graphite foam on thermal performance improvement was very minor for ultra-thin vapor chamber, but significant for thick vapor chamber. …
Date: May 2017
Creator: Patel, Anand Kishorbhai
System: The UNT Digital Library
Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait (open access)

Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait

Knee osteoarthritis (KOA) is the primary cause of chronic immobility in populations over the age of 65. It is a joint degenerative disease in which the articular cartilage in the knee joint wears down over time, leading to symptoms of pain, instability, joint stiffness, and misalignment of the lower extremities. Without intervention, these symptoms gradually worsen over time, decreasing the overall knee range of motion (ROM) and ability to walk. Current clinical interventions include offloading braces, which mechanically realign the lower extremities to alleviate the pain experienced in the medial compartment of the knee joint. Though these braces have proven effective in pain management, studies have shown a significant decrease in knee ROM while using the brace. Concurrently, development of active exoskeletons for rehabilitative gait has increased within recent years in efforts to provide patients with a more effective intervention for dealing with KOA. Though some developed exoskeletons are promising in their efficacy of fostering gait therapy, these devices are heavy, tethered, difficult to control, unavailable to patients, or costly due to the number of complicated components used to manufacture the device. However, the idea that an active component can improve gait therapy for patients motivates this study. This study …
Date: May 2017
Creator: Cao, Jennifer M.
System: The UNT Digital Library
Development of a Natural Fiber Mat Plywood Composite (open access)

Development of a Natural Fiber Mat Plywood Composite

Natural fibers like kenaf, hemp, flax and sisal fiber are becoming alternatives to conventional petroleum fibers for many applications. One such applications is the use of Non-woven bio-fiber mats in the automobile and construction industries. Non-woven hemp fiber mats were used to manufacture plywood in order to optimize the plywood structure. Hemp fiber mats possess strong mechanical properties that comparable to synthetic fibers which include tensile strength and tensile modulus. This study focuses on the use of hemp fiber mat as a core layer in plywood sandwich composite. The optimization of fiber mat plywood was done by performing a three factor experiment. The three factors selected for this experiment were number of hemp mat layers in the core, mat treatment of the hemp mat, and the glue content in the core. From the analysis of all treatments it was determined that single hemp mat had the highest effect on improving the properties of the plywood structure.
Date: August 2017
Creator: Anthireddy, Prasanna Kumar
System: The UNT Digital Library
Effect of Surface Treatment on the Performance of CARALL, Carbon Fiber Reinforced Aluminum Dissimilar Material Joints (open access)

Effect of Surface Treatment on the Performance of CARALL, Carbon Fiber Reinforced Aluminum Dissimilar Material Joints

Fiber-metal laminates (FML) are the advanced materials that are developed to improve the high performance of lightweight structures that are rapidly becoming a superior substitute for metal structures. The reasons behind their emerging usage are the mechanical properties without a compromise in weight other than the traditional metals. The bond remains a concern. This thesis reviews the effect of pre-treatments, say heat, P2 etch and laser treatments on the substrate which modifies the surface composition/roughness to impact the bond strength. The constituents that make up the FMLs in our present study are the Aluminum 2024 alloy as the substrate and the carbon fiber prepregs are the fibers. These composite samples are manufactured in a compression molding process after each pre-treatment and are then subjected to different tests to investigate its properties in tension, compression, flexural and lap shear strength. The results indicate that heat treatment adversely affects properties of the metal and the joint while laser treatments provide the best bond and joint strength.
Date: August 2017
Creator: Bandi, Raghava
System: The UNT Digital Library