Carbon Capture Utilization for Bio-Based Building Insulation Foams

Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry and for other applications. This is because insulation is one of the most important aspects of the building envelope. Global building insulation is expected to reach USD 27.74 billion in 2022. Conventional insulation materials currently used in buildings are made from nonrenewable products (petroleum, fiber glass). However, they yield increasing unrecyclable eco-unfriendly waste at the end of their lives; styrene and polyurethane generates over 100,000 kg of waste insulation in US alone yearly. This is because they are non-biodegradable and can remain as microplastics in the environment for 1000 years. Polyurethane contains the same amount of energy as coal. Additionally, most of the processing techniques and blowing agents used in this manufacturing of these foams are cancerous and injurious to health when inhaled. Because buildings and their construction together account for 36% of global energy use and 39% of energy-related carbon dioxide emissions annually, there is a need to develop eco-friendly foams that will serve as possible substitutes to the currently used petroleum-based foams. This dissertation examined the development and characterization of eco-friendly foams that were developed using the melt mixing technique of bio-resourced …
Date: August 2021
Creator: Oluwabunmi, Kayode Emmanuel
System: The UNT Digital Library

Lignocellulose-Based Nanobiocomposites for Water Purification

The research focuses on the synthesis and application of multifunctional lignocellulosic biomass bioadsorbent and nanobiocomposites for water purification. A bioadsorbent was prepared from kenaf fiber by self-activation without the use of any toxic chemicals in an innovative method. Silver nanoparticles were synthesized by the green route and then impregnated on the surface of kenaf-based activated carbon (KAC), and hemp fibers by heating and photoirradiation. The formation of hemp-based and kenaf-based silver nanocomposites was confirmed using an environmental scanning electron microscope and energy-dispersive x-ray spectroscopy. Low-cost benign nanoadsorbents demonstrated excellent capabilities for the anionic dye Congo red (CR) and cationic dye brilliant green (BG) degradation, inorganic heavy metals [Cu (II), Pb (II), and Cd (II)] adsorption and antibacterial activities. Antibacterial test via a modified disc diffusion method and minimum inhibitory concentrations was assessed towards the pathogenic strains of bacteria, E. coli and S. aureus. A working portable point-of-use filter was designed and developed, with the filter column encapsulated with nanobiocomposites for the removal of multi-metals and dye. Water samples collected from a wastewater treatment plant in Texas and a mining site in Mexico were used to determine the efficacy of the nanobiocomposites columned in the filter. A comparative analysis was also …
Date: August 2021
Creator: Mandal, Sujata
System: The UNT Digital Library
The Role of Interface in Crystal Growth, Energy Harvesting and Storage Applications (open access)

The Role of Interface in Crystal Growth, Energy Harvesting and Storage Applications

A flexible nanofibrous PVDF-BaTiO3 composite material is prepared for impact sensing and biomechanical energy harvesting applications. Dielectric polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3)-PVDF nanofibrous composites were made using the electrospinning process based on a design of experiments approach. The ultrasonication process was optimized using a 2k factorial DoE approach to disperse BaTiO3 particles in PVDF solution in DMF. Scanning electron microscopy was used to characterize the microstructure of the fabricated mesh. The FT-IR and Raman analysis were carried out to investigate the crystal structure of the prepared mesh. Surface morphology contribution to the adhesive property of the composite was explained through contact angle measurements. The capacitance of the prepared PVDF- BaTiO3 nanofibrous mesh was a more than 40% increase over the pure PVDF nanofibers. A comparative study of dielectric relaxation, thermodynamics properties and impact analysis of electrospun polyvinylidene fluoride (PVDF) and 3% BaTiO3-PVDF nanofibrous composite are presented. The frequency dependent dielectric properties revealed micro structural features of the composite material. The dielectric relaxation behavior is further supported by complex impedance analysis and Nyquist plots. The temperature dependence of electric modulus shows Arrhenius type behavior. The observed non-Debye dielectric relaxation in electric loss modulus follows a thermally activated process which …
Date: December 2020
Creator: Ramesh, Dinesh
System: The UNT Digital Library
Thermal Transport Modeling in Three-Dimensional Pillared-Graphene Structures for Efficient Heat Removal (open access)

Thermal Transport Modeling in Three-Dimensional Pillared-Graphene Structures for Efficient Heat Removal

Pillared-graphene structure (PGS) is a novel three-dimensional structure consists of parallel graphene sheets that are separated by carbon nanotube (CNT) pillars that is proposed for efficient thermal management of electronics. For microscale simulations, finite element analyses were carried out by imposing a heat flux on several PGS configurations using a Gaussian pulse. The temperature gradient and distribution in the structures was evaluated to determine the optimum design for heat transfer. The microscale simulations also included conducting a mesh-independent study to determine the optimal mesh element size and shape. For nanoscale simulations, Scienomics MAPS software (Materials And Processes Simulator) along with LAMMPS (Large-scale Atomic/ Molecular Massively Parallel Simulator) were used to calculate the thermal conductivity of different configurations and sizes of PGS. The first part of this research included investigating PGS when purely made of carbon atoms using non-equilibrium molecular dynamics (NEMD). The second part included investigating the structure when supported by a copper foil (or substrate); mimicking production of PGS on copper. The micro- and nano-scale simulations show that PGS has a great potential to manage heat in micro and nanoelectronics. The fact that PGS is highly tunable makes it a great candidate for thermal management applications. The simulations were …
Date: December 2020
Creator: Almahmoud, Khaled Hasan Musa
System: The UNT Digital Library

Thermal Transport Properties Enhancement of Phase Change Material by Using Boron Nitride Nanomaterials for Efficient Thermal Management

In this research thermal properties enhancement of phase change material (PCM) using boron nitride nanomaterials such as nanoparticles and nanotubes is studied through experimental measurements, finite element method (FEM) through COMSOL 5.3 package and molecular dynamics simulations via equilibrium molecular dynamics simulation (EMD) with the Materials and Process Simulations (MAPS 4.3). This study includes two sections: thermal properties enhancement of inorganic salt hydrate (CaCl2∙6H2O) as the phase change material by mixing boron nitride nanoparticles (BNNPs), and thermal properties enhancement of organic phase change material (paraffin wax) as the phase change material via encapsulation into boron nitride nanotubes (BNNTs). The results of the proposed research will contribute to enhance the thermal transport properties of inorganic and organic phase change material applying nanotechnology for increasing energy efficiency of systems including electronic devices, vehicles in cold areas to overcome the cold start problem, thermal interface materials for efficient heat conduction and spacecraft in planetary missions for efficient thermal managements.
Date: December 2020
Creator: Barhemmati Rajab, Nastaran
System: The UNT Digital Library
Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling (open access)

Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling

This dissertation focuses on studying membrane air dehumidification for a membrane moisture exchanger in a membrane heat pump system. The study has two parts: an optimization of membrane moisture exchanger for air dehumidification in the macroscale, and diffusion of water vapor in polymer nanocomposites membrane for humid air dehumidification in the nanoscale. In the first part of the research, the mass transport of water vapor molecules through hydrophilic silica nanochannel chains in hydrophobic polyurethane matrix was studied by simulations and experiments for different membrane moisture exchanger design configurations. The mass transport across the polymer nanocomposite membrane occurs with the diffusion of moist air water vapor molecules in the membrane moisture exchanger in a membrane heat pump air conditioning system for air dehumidification purposes. The hydrophobic polyurethane matrix containing the hydrophilic silica nanochannel chains membrane is responsible for transporting water vapor molecules from the feed side to the permeate side of the membrane without allowing air molecules to pass through.In the second part of the research, diffusion analysis of the polymer nanocomposite membrane were performed in the nanoscale for the polymer nanocomposite membrane. The diffusion phenomena through the polymer, the polymer nanocomposite without modifying the silica surfaces, and the polymer nanocomposite …
Date: August 2020
Creator: Almahmoud, Omar H. M.
System: The UNT Digital Library

Heat Transfer Analysis of a Small Thermochemical Reactor for Hydrogen Production from Ammonia

Several types of research are ongoing throughout the world, to discover economical and reliable techniques to create hydrogen, and propagate the vision of a hydrogen economy. This research examines a COMSOL Multiphysics 5.4 heat transfer model for a hydrogen production system consisting of a retort with two different heat sources, namely a heat tape and an infrared (IR) lamp. The main objective was to compare the two heat sources and find out which one offers a better technique for producing hydrogen by raising the internal center core temperature of the retort from ambient to the highest temperature, preferably 700℃, within the shortest time possible and using less power consumption in attaining the targeted temperature. Through this study, it was established that the IR lamp could potentially help with energy savings by using just 4 kWh to reach the targeted temperature within an hour.
Date: August 2020
Creator: Owusu-Ansah, Nana
System: The UNT Digital Library

Passive Control of Fiber Orientation in Direct Ink Writing 3D Printing

Several active methods, which requires external control systems and moving parts, have been developed to control the fiber orientation during 3D printing. Active mechanisms like rotating nozzle, impeller, and magnetic field have been integrated to realize complex internal fiber structures. In this study, instead of using active methods, I investigate a passive method for controlling the fiber orientation without any moving parts or additional mechatronics added in the printing process. Composites of polydimethylsiloxane (PDMS) and glass fibers (GF) are 3D printed. Channels, such as helicoid, are designed and integrated to guide the ink flow and passively result in different pre-alignment of fibers before the ink flow into narrow nozzle space. While passing through the designed channels, the fibers orient due to the shear between channel walls and the ink. The effect of helicoids with different pitch sizes are investigated via mechanical experiments, microstructural analysis, and numerical simulations. The results show that both surface to volume ratio and helix angle of the channel affect pre-alignment of fiber orientation at the entry of nozzle. The internal fiber structures lead to enhanced and tunable mechanical properties of printed composites. Pitch size 7-9 mm (helix angle of 7.92- 10.15o) is found to be optimal …
Date: August 2020
Creator: Khatri, Nava Raj
System: The UNT Digital Library
Radial and Axial Designs for Magnetic Absorbent Collector in Water (open access)

Radial and Axial Designs for Magnetic Absorbent Collector in Water

The use of collection systems for magnetic sorbents such as Magnetic Activated Carbon are discussed in order to gauge their efficacy in marine environments. Two collectors were built and tested, one which utilized a radial orientation of magnets and another with axially placed magnets. The two systems underwent a series of test with differing linear velocities and angular velocities. From the results, the axial system outperformed its radial counterpart, being most effective with a relatively high concentration of discs placed in series. The medium concentration, however, proved increasingly effective with higher velocities, meaning an optimization concentration exists for this design. The radial system was tested with high and low concentrations of small and large magnets, respectively. The larger magnets, although providing less concentration points in the alternating array, proved more effective for the collection of MAC. From these tests several new innovations were suggested, including belt tensioners, add on mechanisms, and a hybridized design in order to fully optimize the collection of MAC.
Date: August 2020
Creator: Renzetti, Andrew John
System: The UNT Digital Library

Refrigeration Insulation Using Phase Change Material Incorporated Polyurethane Foam for Energy Savings

Incorporating insulation material with phase change materials (PCMs) could help enhance the insulation capability for a refrigerator system. The phase change material can absorb or release large amount of latent heat of fusion depending on surrounding temperatures for efficient thermal management. This research focuses on how incorporating PCM to the conventional PU foam insulation affects the inside temperatures of the refrigerator system and in-turn helps in conserving energy by reducing the compressor run time. It was found that only 0.25-inch-thick PCM layer in insulation can certainly benefit the refrigerators by reducing the amount of electricity consumption and thus increasing the total energy savings through the numerical study results via COMSOL Multiphysics in this study. This work aims to investigate a PCM-incorporated insulation material to accomplish the enhancement of thermal insulation performance for refrigerators.
Date: August 2020
Creator: Shaik, Sania
System: The UNT Digital Library
An Evaluation of Long-Term Air Quality Trends in North Texas using Statistical and Machine Learning Techniques (open access)

An Evaluation of Long-Term Air Quality Trends in North Texas using Statistical and Machine Learning Techniques

While ozone design values have decreased since 2000, the values measured in Denton Airport South (DEN), an exurban region in the northwest tip of the Dallas-Fort Worth (DFW) metroplex, remains above those measured in Dallas Hinton (DAL) and Fort Worth Northwest (FWNW), two extremely urbanized regions; in addition, all three sites remained in nonattainment of National Ambient Air Quality Standards (NAAQS) ozone despite reductions in measured NOx and CO concentrations. The region's inability to achieve ozone attainment is tied to its concentration of total non-methane organic compounds (TNMOC). The mean concentration of TNMOC measured at DAL, FWNW, and DEN between 2000 and 2018 were 67.4 ± 1.51 ppb-C, 89.31 ± 2.12 ppb-C, and 220.69 ± 10.36 ppb-C, respectively. Despite being the least urbanized site of the three, the TNMOC concentration measured at DEN was over twice as large as those measured at the other two sites. A factor-based source apportionment analysis using positive matrix factorization technique showed that natural gas was a major contributing source factor to the measured TNMOC concentrations at all three sites and the dominant source factor at DEN. Natural gas accounted for 32%, 40%, and 69% of the measured TNMOC concentration at DAL, FWNW, and DEN, …
Date: May 2020
Creator: Lim, Guo Quan
System: The UNT Digital Library
Micro-Pipette Thermal Sensor: A Unique Technique for Thermal Characterization of Microfluids, Microsphere, and Biological Cell (open access)

Micro-Pipette Thermal Sensor: A Unique Technique for Thermal Characterization of Microfluids, Microsphere, and Biological Cell

In this research work, an innovative method for measurement of thermal conductivity of a small volume of liquids, microsphere, and the single cancer cell is demonstrated using a micro-pipette thermal sensor (MPTS). The method is based on laser point heating thermometry (LPHT) and transient heat transfer. When a single pulse of a laser beam heats the sensor tip which is in contact with the surrounding liquids or microsphere/cells, the temperature change in the sensor is reliant on the thermal properties of the surrounding sample. We developed a model for numerical analysis of the temperature change using the finite element method (FEM) in COMSOL. Then we used MATLAB to fit the simulation result with experiment data by multi-parameter fitting technique to determine the thermal conductivity. To verify the accuracy in the measurement of the thermal conductivity by the MPTS method, a 10µl sample of de-ionized (DI) water, 50%, and 70% propylene glycol solution were measured with deviation less than 2% from reported data. Also, to demonstrate that the method can be employed to measure microparticles and a single spherical cell, we measured the thermal conductivity of poly-ethylene microspheres with a deviation of less than 1% from published data. We estimated the …
Date: May 2020
Creator: Shrestha, Ramesh
System: The UNT Digital Library

Characterization, Analysis, and Optimization of Rotary Displacer Stirling Engines

Access: Use of this item is restricted to the UNT Community
This work focuses on an innovative Rotary Displacer SE (RDSE) configuration for Stirling engines (SEs). RDSE features rotary displacers instead of reciprocating displacers (found in conventional SE configurations), as well as combined compression and expansion spaces. Guided by the research question "can RDSE as a novel configuration achieve a higher efficiency compared to conventional SE configurations at comparable operating conditions?", the goal of this study is to characterize, analyze, and optimize RDSE which is pursued in three technical stages. It is observed the RDSE prototype has an optimum phase angle of > 90° and thermal efficiency of 15.5% corresponding to 75.2% of the ideal (Carnot) efficiency at the source and sink temperatures of 98.6° C and 22.1° C, respectively. Initial results indicate that 125° phase angle provides more power than that of the theoretically optimum 90° phase angle. The results also show comparable B_n and significantly higher W_n values (0.047 and 0.465, respectively) compared to earlier studies, and suggest the RDSE could potentially be a competitive alternative to other SE configurations. Furthermore, due to lack of a regenerator, the non-ideal effects calculated in the analytical approach have insignificant impact (less than 0.03 kPa in 100 kPa). The clearance volume in …
Date: December 2019
Creator: Bagheri, Amirhossein
System: The UNT Digital Library

Investigations of the Fresnel Lens Based Solar Concentrator System through a Unique Statistical-Algorithmic Approach

Access: Use of this item is restricted to the UNT Community
This work investigates the Fresnel-lens-based solar concentrator-receiver system in a multi-perspective manner to design, test and fabricate this concentrator with high-efficiency photon and heat outputs and a minimized effect of chromatic aberrations. First, a MATLAB®-incorporated algorithm optimizes both the flat-spot and the curved lens designs via a statistical ray-tracing methodology of the incident light, considering all of its incidence parameters. The target is to maximize the solar ray intensity on the receiver's aperture, and therefore, achieve the highest possible focal flux. The algorithm outputs prismatic and dimensional geometries of the Fresnel-lens concentrator, which are simulated by COMSOL® Multiphysics to validate the design. For the second part, a novel genetically-themed hierarchical algorithm (GTHA) has been investigated to design Fresnel-lens solar concentrators that match with the distinct energy input and spatial geometry of various thermal applications. Basic heat transfer analysis of each application decides its solar energy requirement. The GTHA incorporated in MATLAB® optimizes the concentrator characteristics to secure this energy demand, balancing a minimized geometry and a maximized efficiency. Two experimental applications were selected from literature to validate the optimization process, a solar welding system for H13 steel plates and a solar Stirling engine with an aluminum-cavity receiver attached to the …
Date: December 2019
Creator: Qandil, Hassan Darwish Hassan
System: The UNT Digital Library
Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring (open access)

Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring

In this study, gas sensing systems that are based on piezoelectric smart material and structures are proposed, designed, developed, and tested, which are mainly aimed to address the temperature dependent CO2 gas sensing in a real environment. The state-of-the-art of gas sensing technologies are firstly reviewed and discussed for their pros and cons. The adsorption mechanisms including physisorption and chemisorption are subsequently investigated to characterize and provide solutions to various gas sensors. Particularly, a QCM based gas sensor and a C-axis inclined zigzag ZnO FBAR gas sensor are designed and analyzed for their performance on room temperature CO2 gas sensing, which fall into the scope of physisorption. In contrast, a Langasite (LGS) surface acoustic wave (SAW) based acetone vapor sensor is designed, developed, and tested, which is based on the chemisorption analysis of the LGS substrate. Moreover, solid state gas sensors are characterized and analyzed for chemisorption-based sensitive sensing thin film development, which can be further applied to piezoelectric-based gas sensors (i.e. Ca doped ZnO LGS SAW gas sensors) for performance enhanced CO2 gas sensing. Additionally, an innovative MEMS micro cantilever beam is proposed based on the LGS nanofabrication, which can be potentially applied for gas sensing, when combined with …
Date: August 2019
Creator: Zhang, Chen
System: The UNT Digital Library
Denim Fiberboard Fabricated from MUF and pMDI Hybrid Resin System (open access)

Denim Fiberboard Fabricated from MUF and pMDI Hybrid Resin System

In this study, a series of denim fiberboards are fabricated using two different resins, malamine urea formaldehyde (MUF) and polymeric methylene diphenyl diisocyanate (pMDI). Two experimental design factors (1) adhesive content and (2) MUF-pMDI weight ratio, were studied. All the denim fiberboard samples were fabricated following the same resin blending, cold-press and hot-press procedures. The physical and mechanical tests were conducted on the fiberboard following the procedures described in ASTM D1037 to obtain such as modulus of elasticity (MOE), modulus of rupture (MOR), internal bond (IB), thickness swell (TS), and water absorption (WA). The results indicated that the MOE was significantly affected by both factors. IB was affected significantly by weight ratio of different glue types, with 17 wt% more MDI resin portion in the core layer of the denim boards, the IB for total adhesive content 15% fiberboard was enhanced by 306%, while for total adhesive content 25% fiberboard, enhanced by 205%. TS and WA, with higher adhesive content used in denim boards' fabrication, and more pMDI portion in the core layer of the boards, the boards' TS and WA was reduced by up to 64.2% and 78.8%, respectively.
Date: May 2019
Creator: Cui, Zhiying
System: The UNT Digital Library
Increasing Effective Thermal Resistance of Building Envelope's Insulation Using Polyurethane Foam Incorporated with Phase Change Material (open access)

Increasing Effective Thermal Resistance of Building Envelope's Insulation Using Polyurethane Foam Incorporated with Phase Change Material

Incorporating insulation material with phase change materials (PCMs) could help enhance the insulation capability for further building energy savings by reducing the HVAC loadings. During the phase change process between the solid and liquid states, heat is being absorbed or released by PCMs depending on the surrounding temperature. This research explores the benefits of a polyurethane (PU)-PCM composite insulation material through infiltrating paraffin wax as PCM into PU open cell foam. The new PU-PCM composite provides extra shielding from the exterior hot temperatures for buildings. Through this study, it was demonstrated that PU-PCM composite insulation could potentially help building energy savings through reducing the loads on the HVAC systems based on the building energy modeling using EnergyPlus. The Zero Energy Lab (ZØE) at the University of North Texas was modeled and studied in the EnergyPlus. It is a detached building with all wall facades exposed to the ambient. It was determined that the new PU-PCM insulation material could provide 14% total energy saving per year and reduce the electricity use due to cooling only by around 30%.
Date: May 2019
Creator: Houl, Yassine
System: The UNT Digital Library
Comparative Study of Thermal Comfort Models Using Remote-Location Data for Local Sample Campus Building as a Case Study for Scalable Energy Modeling at Urban Level Using Virtual Information Fabric Infrastructure (VIFI) (open access)

Comparative Study of Thermal Comfort Models Using Remote-Location Data for Local Sample Campus Building as a Case Study for Scalable Energy Modeling at Urban Level Using Virtual Information Fabric Infrastructure (VIFI)

The goal of this dissertation is to demonstrate that data from a remotely located building can be utilized for energy modeling of a similar type of building and to demonstrate how to use this remote data without physically moving the data from one server to another using Virtual Information Fabric Infrastructure (VIFI). In order to achieve this goal, firstly an EnergyPlus model was created for Greek Life Center, a campus building located at University of North Texas campus at Denton in Texas, USA. Three thermal comfort models of Fanger model, Pierce two-node model and KSU two-node model were compared in order to find which one of these three models is most accurate to predict occupant thermal comfort. This study shows that Fanger's model is most accurate in predicting thermal comfort. Secondly, an experimental data pertaining to lighting usage and occupancy in a single-occupancy office from Carnegie Mellon University (CMU) has been implemented in order to perform energy analysis of Greek Life Center assuming that occupants in this building's offices behave similarly as occupants in CMU. Thirdly, different data types, data formats and data sources were identified which are required in order to develop a city-scale urban building energy model (CS-UBEM). …
Date: December 2018
Creator: Talele, Suraj Harish
System: The UNT Digital Library
Membrane-Based Energy Recovery Ventilator Coupled with Thermal Energy Storage Using Phase Change Material for Efficient Building Energy Savings (open access)

Membrane-Based Energy Recovery Ventilator Coupled with Thermal Energy Storage Using Phase Change Material for Efficient Building Energy Savings

This research work is focused on a conceptual combination of membrane-based energy recovery ventilator (ERV) and phase change material (PCM) to provide energy savings in building heating, ventilation & air-conditioning (HVAC) systems. An ERV can recover thermal energy and moisture between the outside fresh air (OFA) entering into the building and the exhaust air (EA) leaving from the building thus reducing the energy consumption of the HVAC system for cooling and heating the spaces inside the building. The membranes were stacked parallel to each other forming adjacent channels in a counter-flow arrangement for OFA and EA streams. Heat and moisture is diffused through the membrane core. Flat-plate encapsulated PCM is arranged in OFA duct upstream/downstream of the ERV thereby allowing for further reduction in temperature by virtue of free cooling. Paraffin-based PCMs with a melting point of 24°C and 31°C is used in two different configurations where the PCM is added either before or after the ERV. Computational fluid dynamics (CFD), and heat and mass transfer modeling is employed using COMSOL Multiphysics v5.3 to perform the heat and mass transfer analysis for the membrane-based ERV and flat-plate PCMs. An 8-story office building was considered to perform building energy simulation using …
Date: December 2018
Creator: Mohiuddin, Mohammed Salman
System: The UNT Digital Library
Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscae Thermometry (open access)

Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscae Thermometry

In this study, the thermal properties of low dimensional materials such as graphene and boron nitride nanotube were investigated. As one of important heat transfer characteristics, interfacial thermal resistance (ITR) between graphene and Cu film was estimated by both experiment and simulation. In order to characterize ITR, the micropipette sensing technique was utilized to measure the temperature profile of suspended and supported graphene on Cu substrate that is subjected to continuous wave laser as a point source heating. By measuring the temperature of suspended graphene, the intrinsic thermal conductivity of suspended graphene was measured and it was used for estimating interfacial thermal resistance between graphene and Cu film. For simulation, a finite element method and a multiparameter fitting technique were employed to find the best fitting parameters. A temperature profile on a supported graphene on Cu was extracted by a finite element method using COMSOL Multiphysics. Then, a multiparameter fitting method using MATLAB software was used to find the best fitting parameters and ITR by comparing experimentally measured temperature profile with simulation one. In order to understand thermal transport between graphene and Cu substrate with different interface distances, the phonon density of states at the interface between graphene and Cu …
Date: August 2018
Creator: Jeong, Jae Young
System: The UNT Digital Library
Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response (open access)

Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response

The goal of this research is to measure viscosity via the analysis of amplitude response of a piezo driven vibrating cantilevers partially immersed in a viscous medium. As a driving frequency is applied to a piezoceramic material, the external forces acting on the system will affect its maximum amplitude. This thesis applies this principle through experimental and analytical analyses of the proportional relationship between viscosity and the amplitude response of the first natural frequency mode of the sinusoidal vibration. Currently, the few cantilever-based viscometer designs that exist employ resonant frequency response as the parameter by which the viscosity is correlated. The proposed piezoelectric viscometer employs amplitude response in lieu of resonant frequency response. The goal of this aspect of the research was to provide data confirming amplitude response as a viable method for determining viscosity. A miniature piezoelectric plate was mounted to a small stainless-steel cantilever beam. The tip of the cantilever was immersed within various fluid test samples. The cantilever was then swept through a range of frequencies in which the first frequency mode resided. The operating principle being as the viscosity of the fluid increases the amplitude response of cantilever vibration will decrease relatively. What was found was …
Date: August 2018
Creator: Siegel, Sanford H.
System: The UNT Digital Library
Use of Bio-Product/Phase Change Material Composite in the Building Envelope for Building Thermal Control and Energy Savings (open access)

Use of Bio-Product/Phase Change Material Composite in the Building Envelope for Building Thermal Control and Energy Savings

This research investigates the bio-products/phase change material (PCM) composites for the building envelope application. Bio-products, such as wood and herb, are porous medium, which can be applied in the building envelope for thermal insulation purpose. PCM is infiltrated into the bio-product (porous medium) to form a composite material. The PCM can absorb/release large amount of latent heat of fusion from/to the building environment during the melting/solidification process. Hence, the PCM-based composite material in the building envelope can efficiently adjust the building interior temperature by utilizing the phase change process, which improves the thermal insulation, and therefore, reduces the load on the HVAC system. Paraffin wax was considered as the PCM in the current studies. The building energy savings were investigated by comparing the composite building envelope material with the conventional material in a unique Zero-Energy (ZØE) Research Lab building at University of North Texas (UNT) through building energy simulation programs (i.e., eQUEST and EnergyPlus). The exact climatic conditions of the local area (Denton, Texas) were used as the input values in the simulations. It was found that the EnergyPlus building simulation program was more suitable for the PCM based building envelope using the latent heat property. Therefore, based on the …
Date: August 2018
Creator: Boozula, Aravind Reddy
System: The UNT Digital Library
Analysis of Heat Transfer Enhancement in Channel Flow through Flow-Induced Vibration (open access)

Analysis of Heat Transfer Enhancement in Channel Flow through Flow-Induced Vibration

In this research, an elastic cylinder that utilized vortex-induced vibration (VIV) was applied to improve convective heat transfer rates by disrupting the thermal boundary layer. Rigid and elastic cylinders were placed across a fluid channel. Vortex shedding around the cylinder led to the periodic vibration of the cylinder. As a result, the flow-structure interaction (FSI) increased the disruption of the thermal boundary layer, and therefore, improved the mixing process at the boundary. This study aims to improve convective heat transfer rate by increasing the perturbation in the fluid flow. A three-dimensional numerical model was constructed to simulate the effects of different flow channel geometries, including a channel with a stationary rigid cylinder, a channel with a elastic cylinder, a channel with two elastic cylinders of the same diameter, and a channel with two elastic cylinders of different diameters. Through the numerical simulations, the channel maximum wall temperature was found to be reduced by approximately 10% with a stationary cylinder and by around 17% when introducing an elastic cylinder in the channel compared with the channel without the cylinder. Channels with two-cylinder conditions were also studied in the current research. The additional cylinder with the same diameter in the fluid channel …
Date: December 2017
Creator: Kota, Siva Kumar k
System: The UNT Digital Library
Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal Radiometry (open access)

Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal Radiometry

Functionally graded materials (FGMs) are inhomogeneous materials in which the material properties vary with respect to space. Research has been done by scientific community in developing techniques like photothermal radiometry (PTR) to measure the thermal conductivity and volumetric heat capacity of FGMs. One of the problems involved in the technique is to solve the inverse problem, i.e., estimating the thermal properties after the frequency scan has been obtained. The present work involves finding the unknown thermal conductivity and volumetric heat capacity of the FGMs by using finite volume method. By taking the flux entering the sample as periodic and solving the discretized 1-D thermal wave field equation at a frequency domain, one can obtain the complex temperatures at the surface of the sample for each frequency. These complex temperatures when solved for a range of frequencies gives the phase vs frequency scan which can then be compared to original frequency scan obtained from the PTR experiment by using a residual function. Brute force and gradient descent optimization methods have been implemented to estimate the unknown thermal conductivity and volumetric specific heat of the FGMs through minimization of the residual function. In general, the spatial composition profile of the FGMs can …
Date: December 2017
Creator: Koppanooru, Sampat Kumar Reddy
System: The UNT Digital Library