Algorithms of Schensted and Hillman-Grassl and Operations on Standard Bitableaux (open access)

Algorithms of Schensted and Hillman-Grassl and Operations on Standard Bitableaux

In this thesis, we describe Schensted's algorithm for finding the length of a longest increasing subsequence of a finite sequence. Schensted's algorithm also constructs a bijection between permutations of the first N natural numbers and standard bitableaux of size N. We also describe the Hillman-Grassl algorithm which constructs a bijection between reverse plane partitions and the solutions in natural numbers of a linear equation involving hook lengths. Pascal programs and sample output for both algorithms appear in the appendix. In addition, we describe the operations on standard bitableaux corresponding to the operations of inverting and reversing permutations. Finally, we show that these operations generate the dihedral group D_4
Date: August 1983
Creator: Sutherland, David C. (David Craig)
System: The UNT Digital Library
Applications of Graph Theory and Topology to Combinatorial Designs (open access)

Applications of Graph Theory and Topology to Combinatorial Designs

This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, …
Date: December 1988
Creator: Somporn Sutinuntopas
System: The UNT Digital Library
Automorphism Groups of Strong Bruhat Orders of Coxeter Groups (open access)

Automorphism Groups of Strong Bruhat Orders of Coxeter Groups

In this dissertation, we describe the automorphism groups for the strong Bruhat orders A_n-1, B_n, and D_n. In particular, the automorphism group of A_n-1 for n ≥ 3 is isomorphic to the dihedral group of order eight, D_4; the automorphism group of B_n for n ≥ 3 is isomorphic to C_2 x C_2 where C_2 is the cyclic group of order two; the automorphism group of D_n for n > 5 and n even is isomorphic to C_2 x C_2 x C_2; and the automorphism group of D_n for n ≥ 5 and n odd is isomorphic to the dihedral group D_4.
Date: August 1986
Creator: Sutherland, David C. (David Craig)
System: The UNT Digital Library
Axiom of Choice Equivalences and Some Applications (open access)

Axiom of Choice Equivalences and Some Applications

In this paper several equivalences of the axiom of choice are examined. In particular, the axiom of choice, Zorn's lemma, Tukey's lemma, the Hausdorff maximal principle, and the well-ordering theorem are shown to be equivalent. Cardinal and ordinal number theory is also studied. The Schroder-Bernstein theorem is proven and used in establishing order results for cardinal numbers. It is also demonstrated that the first uncountable ordinal space is unique up to order isomorphism. We conclude by encountering several applications of the axiom of choice. In particular, we show that every vector space must have a Hamel basis and that any two Hamel bases for the same space must have the same cardinality. We establish that the Tychonoff product theorem implies the axiom of choice and see the use of the axiom of choice in the proof of the Hahn- Banach theorem.
Date: August 1983
Creator: Race, Denise T. (Denise Tatsch)
System: The UNT Digital Library
Banach Spaces and Weak and Weak* Topologies (open access)

Banach Spaces and Weak and Weak* Topologies

This paper examines several questions regarding Banach spaces, completeness and compactness of Banach spaces, dual spaces and weak and weak* topologies. Examples of completeness and isometries are given using the c₀ and 𝓁ᴰ spaces. The Hahn-Banach extension theorem is presented, along with some applications. General theory about finite and infinite dimensional normed linear spaces is the bulk of the second chapter. A proof of the uniform boundedness principle is also given. Chapter three talks in detail about dual spaces and weak and weak* topologies. An embedding proof and proofs involving weak and weak compactness are also given. The Cauchy-Bunyakowski-Schwarz inequality and Alaoglu's theorem are also proven.
Date: August 1989
Creator: Kirk, Andrew F. (Andrew Fitzgerald)
System: The UNT Digital Library
Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions (open access)

Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions

In leading up to the proof, methods for constructing fields and finitely additive set functions are introduced with an application involving the Tagaki function given as an example. Also, non-absolutely continuous set functions are constructed using Banach limits and maximal filters.
Date: May 1989
Creator: Gurney, David R. (David Robert)
System: The UNT Digital Library
Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors (open access)

Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors

This dissertation focuses on the significance of containment relations between the above mentioned classes of ideals. The main problem considered in Chapter II is determining conditions which lead a ring to be a P-ring, D-ring, or AM-ring when every regular ideal is a P-ideal, D-ideal, or AM-ideal, respectively. We also consider containment relations between classes of regular ideals which guarantee that the ring is a quasi-valuation ring. We continue this study into the third chapter; in particular, we look at the conditions in a quasi-valuation ring which lead to a = Jr, sr - f, and a = v. Furthermore we give necessary and sufficient conditions that a ring be a discrete rank one quasi-valuation ring. For example, if R is Noetherian, then ft = J if and only if R is a discrete rank one quasi-valuation ring.
Date: May 1987
Creator: Race, Denise T. (Denise Tatsch)
System: The UNT Digital Library
Continua and Related Topics (open access)

Continua and Related Topics

This paper is a study of continue and related metric spaces, Chapter I is an introductory chapter. Irreducible continua and noncut points are the main topics in Chapter II. The third chapter begins with a few results on locally connected spaces. These results are then used to prove results in locally connected continua. Decomposable and indecomposable continua are dealt with in Chapter IV. Totally disconnected metric spaces are studied in the beginning of Chapter V. Then we see that every compact metric space is a continuous image of the Cantor set. A continuous map from the Cantor set onto [0,1] is constructed. Also, a continuous map from [0,1] onto [0,1]x[0,1] is built, Then an order preserving homeomorphism is constructed from a metric arc onto [0,1],
Date: August 1982
Creator: Brucks, Karen M. (Karen Marie), 1957-
System: The UNT Digital Library
Convergence of Infinite Series (open access)

Convergence of Infinite Series

The purpose of this paper is to examine certain questions concerning infinite series. The first chapter introduces several basic definitions and theorems from calculus. In particular, this chapter contains the proofs for various convergence tests for series of real numbers. The second chapter deals primarily with the equivalence of absolute convergence, unconditional convergence, bounded multiplier convergence, and c0 multiplier convergence for series of real numbers. Also included in this chapter is a proof that an unconditionally convergent series may be rearranged so that it converges to any real number desired. The third chapter contains a proof of the Silverman-Toeplitz Theorem together with several applications.
Date: August 1983
Creator: Abbott, Catherine Ann
System: The UNT Digital Library
Conway's Link Polynomial: a Generalization of the Classic Alexander's Knot Polynomial (open access)

Conway's Link Polynomial: a Generalization of the Classic Alexander's Knot Polynomial

The problem under consideration is that of determining a simple and effective invariant of knots. To this end, the Conway polynomial is defined as a generalization of Alexander's original knot polynomial. It is noted, however, that the Conway polynomial is not a complete invariant. If two knots are equivalent, as defined in this investigation, then they receive identical polynomials. Yet, if two knots have identical polynomials, no information about their equivalence may be obtained. To define the Conway polynomial, the Axioms for Computation are given and many examples of their use are included. A major result of this investigation is the proof of topological invariance of these polynomials and the proof that the axioms are sufficient for the calculation of the knot polynomial for any given knot or link.
Date: December 1986
Creator: Woodard, Mary Kay
System: The UNT Digital Library
Dimension Theory (open access)

Dimension Theory

This paper contains a discussion of topological dimension theory. Original proofs of theorems, as well as a presentation of theorems and proofs selected from Ryszard Engelking's Dimension Theory are contained within the body of this endeavor. Preliminary notation is introduced in Chapter I. Chapter II consists of the definition of and theorems relating to the small inductive dimension function Ind. Large inductive dimension is investigated in Chapter III. Chapter IV comprises the definition of covering dimension and theorems discussing the equivalence of the different dimension functions in certain topological settings. Arguments pertaining to the dimension o f Jn are also contained in Chapter IV.
Date: August 1986
Creator: Frere, Scot M. (Scot Martin)
System: The UNT Digital Library
Dually Semimodular Consistent Lattices (open access)

Dually Semimodular Consistent Lattices

A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all …
Date: May 1988
Creator: Gragg, Karen E. (Karen Elizabeth)
System: The UNT Digital Library
Duals and Weak Completeness in Certain Sequence Spaces (open access)

Duals and Weak Completeness in Certain Sequence Spaces

In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.
Date: August 1980
Creator: Leavelle, Tommy L. (Tommy Lee)
System: The UNT Digital Library
Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension (open access)

Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension

This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the …
Date: May 1988
Creator: Brucks, Karen M. (Karen Marie), 1957-
System: The UNT Digital Library
Existence of a Solution for a Wave Equation and an Elliptic Dirichlet Problem (open access)

Existence of a Solution for a Wave Equation and an Elliptic Dirichlet Problem

In this paper we consider an existence of a solution for a nonlinear nonmonotone wave equation in [0,π]xR and an existence of a positive solution for a non-positone Dirichlet problem in a bounded subset of R^n.
Date: May 1988
Creator: Sumalee Unsurangsie
System: The UNT Digital Library
An Existence Theorem for an Integral Equation (open access)

An Existence Theorem for an Integral Equation

The principal theorem of this thesis is a theorem by Peano on the existence of a solution to a certain integral equation. The two primary notions underlying this theorem are uniform convergence and equi-continuity. Theorems related to these two topics are proved in Chapter II. In Chapter III we state and prove a classical existence and uniqueness theorem for an integral equation. In Chapter IV we consider the approximation on certain functions by means of elementary expressions involving "bent line" functions. The last chapter, Chapter V, is the proof of the theorem by Peano mentioned above. Also included in this chapter is an example in which the integral equation has more than one solution. The first chapter sets forth basic definitions and theorems with which the reader should be acquainted.
Date: May 1985
Creator: Hunt, Cynthia Young
System: The UNT Digital Library
Finite Element Solutions to Nonlinear Partial Differential Equations (open access)

Finite Element Solutions to Nonlinear Partial Differential Equations

This paper develops a numerical algorithm that produces finite element solutions for a broad class of partial differential equations. The method is based on steepest descent methods in the Sobolev space H¹(Ω). Although the method may be applied in more general settings, we consider only differential equations that may be written as a first order quasi-linear system. The method is developed in a Hilbert space setting where strong convergence is established for part of the iteration. We also prove convergence for an inner iteration in the finite element setting. The method is demonstrated on Burger's equation and the Navier-Stokes equations as applied to the square cavity flow problem. Numerical evidence suggests that the accuracy of the method is second order,. A documented listing of the FORTRAN code for the Navier-Stokes equations is included.
Date: August 1981
Creator: Beasley, Craig J. (Craig Jackson)
System: The UNT Digital Library
Fourier Transforms of Functions on a Finite Abelian Group (open access)

Fourier Transforms of Functions on a Finite Abelian Group

This paper presents a theory of Fourier transforms of complex-valued functions on a finite abelian group and investigates two applications of this theory. Chapter I is an introduction with remarks on notation. Basic theory, including Pontrvagin duality and the Poisson Summation formula, is the subject of Chapter II. In Chapter III the Fourier transform is viewed as an intertwining operator for certain unitary group representations. The solution of the eigenvalue problem of the Fourier transform of functions on the group Z/n of integers module n leads to a proof of the quadratic reciprocity law in Chapter IV. Chapter V addresses the, use of the Fourier transform in computing.
Date: August 1982
Creator: Currey, Bradley Norton
System: The UNT Digital Library
Geometric Problems in Measure Theory and Parametrizations (open access)

Geometric Problems in Measure Theory and Parametrizations

This dissertation explores geometric measure theory; the first part explores a question posed by Paul Erdös -- Is there a number c > 0 such that if E is a Lebesgue measurable subset of the plane with λ²(E) (planar measure)> c, then E contains the vertices of a triangle with area equal to one? -- other related geometric questions that arise from the topic. In the second part, "we parametrize the theorems from general topology characterizing the continuous images and the homeomorphic images of the Cantor set, C" (abstract, para. 5).
Date: August 1981
Creator: Ingram, John M. (John Michael)
System: The UNT Digital Library
Hausdorff, Packing and Capacity Dimensions (open access)

Hausdorff, Packing and Capacity Dimensions

In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that …
Date: August 1989
Creator: Spear, Donald W.
System: The UNT Digital Library
Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings (open access)

Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings

Let K be any field and Q be the rationals. Define K^1[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and Q^1β[X] = {f(X) e Q[X]| the coefficent of β1(X) in the binomial expansion of f(X) is zero}, where {β1(X)}^∞ i=0 are the well-known binomial polynomials. In this work, I establish the following results: K^1[X] and Q^1β[X] are one-dimensional, Noetherian, non-Prüfer domains with the two-generator property on ideals. Using the unique factorization structure of the overrings K[X] and Q[X], the nonprincipal ideal structures of both rings are characterized, and from this characterization, necessary and sufficient conditions are found for a nonprincipal ideal to be invertible. The nonprincipal invertible ideals are then characterized in terms of the coefficients of the generators, and an explicit formula for the inverse of any proper invertible ideal is found. Finally, the class groups of both rings are shown to be torsion free abelian groups. Let n be any nonnegative integer. Results similar to the above are found in the generalizations of these two rings, K^n[X] and q^nβ[X], where the coefficients on the first n nonconstant basis elements are zero. For the domains K^1[X] and Q^1β[X], the property of strong two-generation is …
Date: May 1987
Creator: Chapman, Scott T. (Scott Thomas)
System: The UNT Digital Library
Iterative Solution of Linear Boundary Value Problems (open access)

Iterative Solution of Linear Boundary Value Problems

The investigation is initially a continuation of Neuberger's work on linear boundary value problems. A very general iterative procedure for solution of these problems is described. The alternating-projection theorem of von Neumann is the mathematical starting point for this study. Later theorems demonstrate the validity of numerical approximation for Neuberger's method under certain conditions. A sampling of differential equations within the scope of our iterative method is given. The numerical evidence is that the procedure works well on neutral-state equations, for which no software is written now.
Date: August 1983
Creator: Walsh, John Breslin
System: The UNT Digital Library
The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors (open access)

The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors

We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).
Date: August 1989
Creator: Hipp, James W. (James William), 1956-
System: The UNT Digital Library
The Mean Integral (open access)

The Mean Integral

The purpose of this paper is to examine properties of the mean integral. The mean integral is compared with the regular integral. If [a;b] is an interval, f is quasicontinuous on [a;b] and g has bounded variation on [a;b], then the man integral of f with respect to g exists on [a;b]. The following theorem is proved. If [a*;b*] and [a;b] each is an interval and h is a function from [a*;b*] into R, then the following two statements are equivalent: 1) If f is a function from [a;b] into [a*;b*], gi is a function from [a;b] into R with bounded variation and (m)∫^b_afdg exists then (m)∫^b_ah(f)dg exists. 2) h is continuous.
Date: December 1985
Creator: Spear, Donald W.
System: The UNT Digital Library