Duals and Weak Completeness in Certain Sequence Spaces (open access)

Duals and Weak Completeness in Certain Sequence Spaces

In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.
Date: August 1980
Creator: Leavelle, Tommy L. (Tommy Lee)
System: The UNT Digital Library
Measurable Selection Theorems for Partitions of Polish Spaces into Gδ Equivalence Classes (open access)

Measurable Selection Theorems for Partitions of Polish Spaces into Gδ Equivalence Classes

Let X be a Polish space and Q a measurable partition of X into Gδ equivalence classes. In 1978, S. M. Srivastava proved the existence of a Borel cross section for Q. He asked whether more can be concluded in case each equivalence class is uncountable. This question is answered here in the affirmative. The main result of the author is a proof that shows the existence of a Castaing Representation for Q.
Date: May 1980
Creator: Simrin, Harry S.
System: The UNT Digital Library
The Riesz Representation Theorem (open access)

The Riesz Representation Theorem

In 1909, F. Riesz succeeded in giving an integral represntation for continuous linear functionals on C[0,1]. Although other authors, notably Hadamard and Frechet, had given representations for continuous linear functionals on C[0,1], their results lacked the clarity, elegance, and some of the substance (uniqueness) of Riesz's theorem. Subsequently, the integral representation of continuous linear functionals has been known as the Riesz Representation Theorem. In this paper, three different proofs of the Riesz Representation Theorem are presented. The first approach uses the denseness of the Bernstein polynomials in C[0,1] along with results of Helly to write the continuous linear functionals as Stieltjes integrals. The second approach makes use of the Hahn-Banach Theorem in order to write the functional as an integral. The paper concludes with a detailed presentation of a Daniell integral development of the Riesz Representation Theorem.
Date: August 1980
Creator: Williams, Stanley C. (Stanley Carl)
System: The UNT Digital Library