States

Knowledge Based System and Decision Making Methodologies in Materials Selection for Aircraft Cabin Metallic Structures (open access)

Knowledge Based System and Decision Making Methodologies in Materials Selection for Aircraft Cabin Metallic Structures

Materials selection processes have been the most important aspects in product design and development. Knowledge-based system (KBS) and some of the methodologies used in the materials selection for the design of aircraft cabin metallic structures are discussed. Overall aircraft weight reduction means substantially less fuel consumption. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures inside the cabin. Among various methodologies of materials selection using Multi Criterion Decision Making (MCDM) techniques, a few of them are demonstrated with examples and the results are compared with those obtained using Ashby's approach in materials selection. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes in the process. Aluminum alloys with high strength-to-weight ratio have been second-to-none in most of the aircraft parts manufacturing. Magnesium alloys that are much lighter in weight as alternatives to the Al-alloys currently in use in the structures are tested using the methodologies and ranked results are compared. Each material attribute considered in the design are categorized as benefit and non-benefit attribute. Using Ashby's approach, material indices that are required to be maximized for an optimum performance are determined, and materials are ranked based on the …
Date: August 2016
Creator: Adhikari, Pashupati Raj
System: The UNT Digital Library
Energy Harvesting Wireless Piezoelectric Resonant Force Sensor (open access)

Energy Harvesting Wireless Piezoelectric Resonant Force Sensor

The piezoelectric energy harvester has become a new powering option for some low-power electronic devices such as MEMS (Micro Electrical Mechanical System) sensors. Piezoelectric materials can collect the ambient vibrations energy and convert it to electrical energy. This thesis is intended to demonstrate the behavior of a piezoelectric energy harvester system at elevated temperature from room temperature up to 82°C, and compares the system’s performance using different piezoelectric materials. The systems are structured with a Lead Magnesium Niobate-Lead Titanate (PMN-PT) single crystal patch bonded to an aluminum cantilever beam, Lead Indium Niobate-Lead Magnesium Niobate-Lead Titanate (PIN-PMN-PT) single crystal patch bonded to an aluminum cantilever beam and a bimorph cantilever beam which is made of Lead Zirconate Titanate (PZT). The results of this experimental study show the effects of the temperature on the operation frequency and output power of the piezoelectric energy harvesting system. The harvested electrical energy has been stored in storage circuits including a battery. Then, the stored energy has been used to power up the other part of the system, a wireless resonator force sensor, which uses frequency conversion techniques to convert the sensor’s ultrasonic signal to a microwave signal in order to transmit the signal wirelessly.
Date: December 2013
Creator: Ahmadi, Mehdi
System: The UNT Digital Library
Hydrophobicity of Magnetite Coating on Low Carbon Steel (open access)

Hydrophobicity of Magnetite Coating on Low Carbon Steel

Superhydrophobic coatings (SHC) with excellent self-cleaning and corrosion resistance property is developed on magnetite coated AISI SAE 1020 steel by using a simple immersion method. Roughness measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle measurement (CAM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), and qualitative characterization of self-cleaning behavior, antifouling property and durability of the coatings are assessed. A water contact angle as high as 152o on the coated surface with excellent self-cleaning and resistivity to corrosion and good longevity in atmospheric air is obtained. Self-cleaning test results prove that these surfaces can find applications in large scale production of engineering materials. Potentiodynamic polarization tests and EIS tests confirm that the superhydrophobic low carbon steel surfaces have better resistance to corrosion compared to bare steel and magnetite coated steel in 3.5% NaCl solution. But the longevity of the coated steel surfaces in 3.5% salt solution is limited, which is revealed by the immersion durability test. However, hydrophobic coatings (HC) have better stability in normal tap water, and it can stay unharmed up to 15 days. Finally, hydrophobic coatings on low carbon steel surface retains hydrophobic …
Date: August 2018
Creator: Akhtar, Mst Alpona
System: The UNT Digital Library
A Computer-Based Process Control System for a Target Station in a LINAC Facility (open access)

A Computer-Based Process Control System for a Target Station in a LINAC Facility

An event-driven, sequential, process control system was designed for International Isotopes, Inc., to automate and remotely control a target station at the company's linear accelerator facility. The designed system consisted of two major sections: a software program (virtual instrument), which was developed by LabVIEW, and a hardware interface (FieldPoint Modular Distributed I/O System by National Instrument), which had to be a pre-developed system that did not require customization. The designed virtual instrument was tested on a simulation model that mimed the target station. The result was a valid design.
Date: May 1999
Creator: Al-Shantaf, Abdulraouf O.
System: The UNT Digital Library
Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces (open access)

Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces

The objective of this research was to investigate the performance of two-phase spray cooling with HFC-134a and HFO-1234yf refrigerants using practical enhanced heat transfer surfaces. Results of the study were expected to provide a quantitative spray cooling performance comparison with working fluids representing the current and next-generation mobile air conditioning refrigerants, and demonstrate the feasibility of this approach as an alternative active cooling technology for the thermal management of high heat flux power electronics (i.e., IGBTs) in electric-drive vehicles. Potential benefits of two-phase spray cooling include achieving more efficient and reliable operation, as well as compact and lightweight system design that would lead to cost reduction. The experimental work involved testing of four different enhanced boiling surfaces in comparison to a plain reference surface, using a commercial pressure-atomizing spray nozzle at a range of liquid flow rates for each refrigerant to determine the spray cooling performance with respect to heat transfer coefficient (HTC) and critical heat flux (CHF). The heater surfaces were prepared using dual-stage electroplating, brush coating, sanding, and particle blasting, all featuring "practical" room temperature processes that do not require specialized equipment. Based on the obtained results, HFC-134a provided a better heat transfer performance through higher HTC and …
Date: August 2017
Creator: Altalidi, Sulaiman Saleh
System: The UNT Digital Library

Development of a Coaxiality Indicator

Access: Use of this item is restricted to the UNT Community
The geometric dimensioning and tolerancing concept of coaxiality is often required by design engineers for balance of rotating parts and precision mating parts. In current practice, it is difficult for manufacturers to measure coaxiality quickly and inexpensively. This study examines feasibility of a manually-operated, mechanical device combined with formulae to indicate coaxiality of a test specimen. The author designs, fabricates, and tests the system for measuring coaxiality of holes machined in a steel test piece. Gage Repeatability and Reproducibility (gage R&R) and univariate analysis of variance is performed in accordance with Measurement System Analysis published by AIAG. Results indicate significant design flaws exist in the current configuration of the device; observed values vary greatly with operator technique. Suggestions for device improvements conclude the research.
Date: December 1999
Creator: Arendsee, Wayne C.
System: The UNT Digital Library
The Design and Development of Lightweight Composite Wall, Roof, and Floor Panels for Rigid Wall Shelter (open access)

The Design and Development of Lightweight Composite Wall, Roof, and Floor Panels for Rigid Wall Shelter

This thesis presents a research effort aimed at developing a stronger, lighter, and more economic shelter using rigid wall panels. Reported herein is insulation research, wall and roof panel design and testing, floor section modeling and strength calculations, and cost and weight calculations. Beginning stages focus on developing solid wall and roof panels using cold-formed steel corrugated sheathing and members, as well as polyurethane spray foam for insulation. This research includes calculating uniform load density, to determine the overall strength of the panel. The next stage focuses on the flexural strength of the wall and roof panels, as well as finalizing the floor design for the shelter. This includes determining maximum flexural strength required to meet the standards set by the project goal. Direct strength method determined the correct thickness of members to use based on the dimension selected for the design. All Phases incorporated different connection methods, with varied stud spacing, to determine the safest design for the new shelters. Previous research has shown that cold-formed steel corrugated sheathing performs better than thicker flat sheathing of various construction materials, with screw and spot weld connections. Full scale shear wall tests on this type of shear wall system have been …
Date: May 2018
Creator: Artman, Jeremy J
System: The UNT Digital Library

Design Method of Cold-Formed Steel Framed Shear Wall Sheathed by Structural Concrete Panel

Access: Use of this item is restricted to the UNT Community
The objective of this research is developing a new method of design for cold-formed steel framed shear wall sheathed by ¾" thick USG structural panel concrete subfloor using a predictive analytical model and comparing the results obtained from the model with those achieved from real testing to verify the analytical model and predicted lateral load-carrying capacity resulted from that. Moreover, investigating the impact of various screw spacings on shear wall design parameter such as ultimate strength, yield strength, elastic stiffness, ductility ratio and amount of energy dissipation is another purpose of this research.
Date: December 2019
Creator: Ashkanalam, Aida
System: The UNT Digital Library

A model for designing a new telecommunication system in Mongolia

Access: Use of this item is restricted to the UNT Community
The objective of this research is to design, and determine the feasibility of, a telecommunication system for the city of Erdenet, Mongolia. The Mongolian Telecommunication Company, Telecommunication Company of Erdenet city, and the National Statistical Office of Mongolia provided the data required for telecommunication forecasting of Erdenet. The literature review and analysis of the telecommunication forecasting indicate the need for a model of a new Telecommunication system in Erdenet, Mongolia. The model, as indicated, should become a useful example for planning and updating the telecommunication system in Mongolia. The design of a proposed telecommunication network involves the following considerations: analyzing and forecasting telephone traffic, calculating the required number of channels, determining exchange locations, traffic matrix, and establishing a basic hierarchical structure.
Date: May 2001
Creator: Baatarjav, Enkhbat
System: The UNT Digital Library
Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring (open access)

Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring

High-temperature piezoelectric wafer active sensors (HT-PWAS) have been developed for structure health monitoring at hazard environments for decades. Different candidates have previously been tested under 270 °C and a new piezoelectric material langasite (LGS) was chosen here for a pilot study up to 700 °C. A preliminary study was performed to develop a high temperature sensor that utilizes langasite material. The Electromechanical impedance (E/M) method was chosen to detect the piezoelectric property. Experiments that verify the basic piezoelectric property of LGS at high temperature environments were carried out. Further validations were conducted by testing structures with attached LGS sensors at elevated temperature. Additionally, a detection system simulating the working process of LGS monitoring system was developed with PZT material at room temperature. This thesis, for the first time, (to the best of author’s knowledge) presents that langasite is ideal for making piezoelectric wafer active sensors for high temperature structure health monitoring applications.
Date: December 2014
Creator: Bao, Yuanye
System: The UNT Digital Library
Linearity and monotonicity of a 10-bit, 125 MHz, segmented current steering digital to analog converter (open access)

Linearity and monotonicity of a 10-bit, 125 MHz, segmented current steering digital to analog converter

The purpose of this research is to determine the linearity and monotonicity of the THS5651IDW digital to analog converter (DAC), a prototype of the future Texas Instruments TLV5651, 10-bit, 125 MHz communication DAC. Testing was conducted at the Texas Instruments facility on Forest Lane, Dallas, Texas. Texas Instruments provided test equipment, software and laboratory space to obtain test data. Analysis of the data found the DAC to be monotonic since the magnitude of the differential nonlinearity (DNL) was less than ± 1 least significant bit (LSB) and the integral nonlinearity (INL) was less than ± 0.5 LSB. The study also showed that the DAC has primarily negative DNL although the DNL is well within the desired specification.
Date: May 2000
Creator: Bittle, Charles C.
System: The UNT Digital Library
Recommended Modified zone Method Correction Factor for Determining R-values of Cold-Formed Steel Wall Assemblies (open access)

Recommended Modified zone Method Correction Factor for Determining R-values of Cold-Formed Steel Wall Assemblies

Currently, ASHRAE has determined the zone method and modified zone method are appropriate calculation methods for materials with a high difference in conductivity, such as cold-formed steel (CFS) walls. Because there is currently no standard U-Factor calculation method for CFS walls, designers and code officials alike tend to resort to the zone method. However, the zone method is restricted to larger span assemblies because the zone factor coefficient is 2.0. This tends to overestimate the amount of surface area influenced by CFS. The modified zone method is restricted to C-shaped stud, clear wall assemblies with framing factors between 9 and 15%. The objective of the research is to narrow the gap of knowledge by re-examining the modified zone method in order to more accurately determine R-Values and U-Factors for CFS wall assemblies with whole wall framing factor percentages of 22% and above.
Date: May 2011
Creator: Black, John
System: The UNT Digital Library
A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices (open access)

A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm.
Date: May 2008
Creator: Borden, Bradley W.
System: The UNT Digital Library
FPGA Prototyping of a Watermarking Algorithm for MPEG-4 (open access)

FPGA Prototyping of a Watermarking Algorithm for MPEG-4

In the immediate future, multimedia product distribution through the Internet will become main stream. However, it can also have the side effect of unauthorized duplication and distribution of multimedia products. That effect could be a critical challenge to the legal ownership of copyright and intellectual property. Many schemes have been proposed to address these issues; one is digital watermarking which is appropriate for image and video copyright protection. Videos distributed via the Internet must be processed by compression for low bit rate, due to bandwidth limitations. The most widely adapted video compression standard is MPEG-4. Discrete cosine transform (DCT) domain watermarking is a secure algorithm which could survive video compression procedures and, most importantly, attacks attempting to remove the watermark, with a visibly degraded video quality result after the watermark attacks. For a commercial broadcasting video system, real-time response is always required. For this reason, an FPGA hardware implementation is studied in this work. This thesis deals with video compression, watermarking algorithms and their hardware implementation with FPGAs. A prototyping VLSI architecture will implement video compression and watermarking algorithms with the FPGA. The prototype is evaluated with video and watermarking quality metrics. Finally, it is seen that the video qualities …
Date: May 2007
Creator: Cai, Wei
System: The UNT Digital Library
Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions. (open access)

Susceptibility of a digital turbine control system to IEEE 802.11 compliant emissions.

Within the nuclear industry, there have been numerous instances of radio transmissions interfering with sensitive plant equipment. Instances documented vary from minor instrument fluctuations to major plant transients including reactor trips. With the nuclear power industry moving toward digital technologies for control and reactor protection systems, concern exists regarding their potential susceptibility to contemporary wireless telecommunications technologies. This study evaluates the susceptibility of Comanche Peak's planned turbine controls upgrade to IEEE 802.11 compliant wireless radio emissions. The study includes a review of previous research, industry emissions standards, and technical overview of the various IEEE 802.11 protocols and details the testing methodology utilized to evaluate the digital control system. The results of this study concluded that the subject digital control system was unaffected by IEEE 802.11 compliant emissions even when the transmitter was in direct contact with sensitive components.
Date: December 2003
Creator: Carter, Clinton E.
System: The UNT Digital Library
Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications (open access)

Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications

Optical microlasers have been used in different engineering fields and for sensing various applications. They have been used in biomedical fields in applications such as for detecting protein biomarkers for cancer and for measuring biomechanical properties. The goal of this work is to propose a microfluidic-based fabrication method for fabricating optical polymer based microlasers, which has advantages, over current methods, such us the fabrication time, the contained cost, and the reproducibility of the microlaser's size. The microfluidic setup consisted of microfluidic pumps and a flow focusing droplet generator chip made of polydimethylsiloxane (PDMS). Parameters such as the flow rate (Q) and the pressure (P) of both continuous and dispersed phases are taken into account for determining the microlaser's size and a MATLAB imaging tool is used to reduce the microlaser's diameter estimation. In addition, two applications are discussed: i) electric field measurements via resonator doped with Di-Anepps-4 voltage sensitive dye, and ii) strain measurements in a 3D printed bone-like structure to mimic biomedical implantable sensors.
Date: December 2019
Creator: Cavazos, Omar
System: The UNT Digital Library
Nominal Shear Strength and Seismic Detailing of Cold-formed Steel Shear Walls using Steel Sheet Sheathing (open access)

Nominal Shear Strength and Seismic Detailing of Cold-formed Steel Shear Walls using Steel Sheet Sheathing

In this research, monotonic and cyclic tests on cold-formed steel shear walls sheathed with steel sheets on one side were conducted to (1) verify the published nominal shear strength for 18-mil and 27-mil steel sheets; and (2) investigate the behavior of 6-ft. wide shear walls with multiple steel sheets. In objective 1: this research confirms the discrepancy existed in the published nominal strength of 27-mil sheets discovered by the previous project and verified the published nominal strength of 18 mil sheet for the wind design in AISI S213. The project also finds disagreement on the nominal strength of 18-mil sheets for seismic design, which is 29.0% higher than the published values. The research investigated 6-ft. wide shear wall with four framing and sheathing configurations. Configuration C, which used detailing, could provide the highest shear strength, compared to Configurations A and B. Meanwhile, the shear strength and stiffness of 2-ft. wide and 4-ft. wide wall can be improved by using the seismic detailing.
Date: August 2010
Creator: Chen, Yujie
System: The UNT Digital Library
Ota-quadrotor: An Object-tracking Autonomous Quadrotor for Real-time Detection and Recognition (open access)

Ota-quadrotor: An Object-tracking Autonomous Quadrotor for Real-time Detection and Recognition

The field of robotics and mechatronics is advancing at an ever-increasing rate and we are starting to see robots making the transition from the factories to the workplace and homes as cost is reduced and they become more useful. In recent years quadrotors have become a popular unmanned air vehicle (UAV) platform. These UAVs or micro air vehicles (MAV) are being used for many new and exciting applications such as aerial monitoring of wildlife, disaster sites, riots and protests. They are also being used in the film industry, as they are significantly cheaper means of getting aerial footage. While quadrotors are not extremely expensive a good system can cost in the range of $3000 - $8000 and thus too costly as a research platform for many. There are a number of cheaper open source platforms. The ArduCopter is under constant development, has the largest community and is inexpensive making it an ideal platform to work with. The goal of this thesis was to implement video processing on a ground control station allowing for the ArduCopter to track moving objects. This was achieved by using the OpenCV video-processing library to implement object tracking and the MAVLink communication protocol, available on the …
Date: May 2012
Creator: Coelho, Gavin
System: The UNT Digital Library
Mist Characterization in Drilling 1018 Steel (open access)

Mist Characterization in Drilling 1018 Steel

Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.
Date: August 2012
Creator: Cole, Ian
System: The UNT Digital Library
Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System. (open access)

Cost Savings Realized Through Proper Sizing of an Excessive Instrument Air System.

The purpose of this research was to determine if installing a smaller air compressor could reduce the electrical usage of a large semiconductor manufacturing plant. A 200 horsepower Atlas Copco compressor was installed with the existing 500 horsepower Ingersoll-Rand compressors. Testing was conducted during the regular manufacturing process at MEMC Southwest in Sherman, Texas. Analysis of the data found that installing the new compressor could reduce electrical consumption. The study also found there are specific operational setpoints that allow the compressor to operate more efficiently.
Date: December 2003
Creator: Condron, Ewell D.
System: The UNT Digital Library
Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters (open access)

Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters

The objective of this thesis is to determine if the single sided resistance spot weld (RSW) can be used as a feasible connection method for cold formed steel (CFS) shear walls subject to lateral force of either seismic or wind loads on mobile shelters. The research consisted of three phases which include: a design as a 3D BIM model, connection tests of the resistance spot weld, and full-scale testing of the designed solid wall panels. The shear wall testing was conducted on specimens with both resistance spot weld and self-drilling screws and the results from tests gave a direct comparison of these connections when the solid wall panel was subjected to in-plane shear forces. The full-scale tests also included 4-point bending tests which was designed to investigate the wall panel's resistance to the lateral loads applied perpendicularly to the surface. The research discovered that the singled sided resistance spot weld achieved similar performance as the self-drilling screws in the applications of CFS wall panels for mobile shelters. The proposed single sided resistance spot weld has advantages of low cost, no added weight, fast fabrication, and it is a feasible connection method for CFS wall panels.
Date: December 2017
Creator: Derrick, Nathan Lynn
System: The UNT Digital Library

Design Method for Cold-Formed Steel Shear Wall Sheathed with Polymer Composite Panel

In order to predict the strength of shear wall with cold-formed steel framing members, analytical models were reviewed. Multiple analytical models were studied, as well as twenty-one connection tests were performed. The connection tests consist of 50-ksi cold-formed steel framing track, different fastening configurations, and different sheathing thicknesses (1/8" and 1/2"). No.12 screw resulted in the highest peak load of all fastening configurations, while the rivet connection had the lowest peak load. In addition, failure modes were observed after conducting the connection tests including shear in fastening, screw pullout, and bearing in the sheathing. However, only the rivet and No.10 screw fastening configurations were used in the prediction analysis of the shear wall by the elastic model. Six shear wall tests were conducted on both panels (1/2"and 1/8" thickness). After doing the comparison between the experimental and the elastic model, the percentage difference for the 1/8" and the 1/2" polymer composite panels (3''along the edge and 6''along the chord stud), was very small. It was 6.2% for the 1/8" and 2.96% for the 1/2" panels. This means the analytical model can predict the shear wall peak load. However, the percentage difference was slightly higher being 7.4% for the 1/2" polymer …
Date: August 2020
Creator: Dewaidi, Mohaned Ali
System: The UNT Digital Library

Evaluation of dynamic and static electrical characteristics for the DY8 and YI8 process gallium diodes in comparison to the DI8 process boron diodes.

Access: Use of this item is restricted to the UNT Community
A rectifier is an electrical device, comprising one or more semiconductor devices arranged for converting alternating current to direct current by blocking the negative or positive portion of the waveform. The purpose of this study would be to evaluate dynamic and static electrical characteristics of rectifier chips fabricated with (a) DY8 process and (b) YI8 process and compare them with the existing DI8 process rectifiers. These new rectifiers were tested to compare their performance to meet or exceed requirements of lower forward voltages, leakage currents, reverse recovery time, and greater sustainability at higher temperatures compared to diodes manufactured using boron as base (DI8 process diodes) for similar input variables.
Date: December 2006
Creator: Dhoopati, Swathi
System: The UNT Digital Library
Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans (open access)

Using Motor Electrical Signature Analysis to Determine the Mechanical Condition of Vane-Axial Fans

The purpose of this research was a proof of concept using a fan motor stator as transducer to monitor motor rotor and attached axial fan for mechanical motion. The proof was to determine whether bearing faults and fan imbalances could be detected in vane-axial fans using Motor Electrical Signature Analysis (MESA). The data was statistically analyzed to determine if the MESA systems could distinguish between baseline conditions and discrete fault frequencies for the three test conditions: bearing inner race defect, bearing outer race defect, and fan imbalance. The statistical conclusions for these proofs of concept were that MESA could identify all three faulted conditions.
Date: August 2002
Creator: Doan, Donald Scott
System: The UNT Digital Library