Cyanide Assimilation in Pseudomonas Fluorescens: Characterization of Cyanide Oxygenase as a Pterin-Dependent Multicomponent Enzyme Complex

Access: Use of this item is restricted to the UNT Community
Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated by an enzyme referred to as cyanide oxygenase (CNO), previously shown to require components in both high (H) (>30 kDa) and low (L) (<10 kDa) molecular weight cell fractions. In this study, tetrahydrobiopterin (H4biopterin) was identified as a cofactor in fraction L, thus making CNO appear as a pterin- dependent hydroxylase. CNO was purified 150-fold (specific activity 0.9 U/mg) and quantitatively converted cyanide to formate and ammonia as reaction products. When coupled with formate dehydrogenase, the complete enzymatic system for cyanide oxidation to carbon dioxide and ammonia was reconstituted. CNO was found to be an aggregate of known enzymes that included NADH oxidase (Nox), NADH peroxidase (Npx), cyanide dihydratase (CynD) and carbonic anhydrase (CA). A complex multi-step reaction mechanism is proposed in which Nox generates hydrogen peroxide which in turn is utilized by Npx to catalyze the oxygenation of cyanide to formamide accompanied by the consumption of one and two molar equivalents of oxygen and NADH, respectively. The further hydrolysis of formamide to ammonia and formate is thought to be mediated by CynD. The …
Date: May 2004
Creator: Fernandez, Ruby
System: The UNT Digital Library

Identification and characterization of an incomplete root hair elongation (IRE)-like gene in Medicago truncatula (L.) root nodules.

Access: Use of this item is restricted to the UNT Community
Cloning and molecular characterization of new genes constitutes a useful approach in studying the symbiotic interactions between the model plant Medicago truncatula and Synorhizobium meliloti. Large numbers of expressed sequence tags (ESTs) available for Medicago truncatula, along with numerous cDNA, oligonucleotides, and Affimetrix DNA microarray chips, represent useful tools for gene discovery. In an attempt to identify a new gene that might be involved in the process of nodulation in Medicago truncatula, preliminary data reported by Fedorova et al. (2002), who identified 340 putative gene products or tentative consensus sequences (TCs) expressed only in nodules, was used. This research was focused on TC33166 (TC103185), which has 3 ESTs in the TC, and whose strongest BLASTX hit of TC103185 is the incomplete root hair elongation (IRE) protein kinase-like protein (NP_192429) from Arabidopsis thaliana. The Arabidopsis IRE gene is required for normal root hair growth, and a role in apical growth was suggested (Oyama et al., 2002). Infection thread growth can be looked at as an inward growth of the root hair. Thus, TC103185 was a good candidate for identifying a gene that may be involved in early events of nodulation. MtIRE (GenBank accession AC122727) is organized in 17 exons and 16 …
Date: May 2006
Creator: Pislariu, Catalina Iulia
System: The UNT Digital Library

Characterization of Infection Arrest Mutants of Medicago Truncatula and Genetic Mapping of Their Respective Genes.

Access: Use of this item is restricted to the UNT Community
In response to compatible rhizobia, leguminous plants develop unique plant organs, root nodules, in which rhizobia fix nitrogen into ammonia. During nodule invasion, the rhizobia gain access to newly divided cells, the nodule primordia, in the root inner cortex through plant-derived cellulose tubes called infection threads. Infection threads begin in curled root hairs and bring rhizobia into the root crossing several cell layers in the process. Ultimately the rhizobia are deposited within nodule primordium cells through a process resembling endocytosis. Plant host mechanisms underlying the formation and regulation of the invasion process are not understood. To identify and clone plant genes required for nodule invasion, recent efforts have focused on Medicago truncatula. In a collaborative effort the nodulation defect in the lin (lumpy infections) mutant was characterized. From an EMS-mutagenized population of M. truncatula, two non-allelic mutants nip (numerous infections with polyphenolics) and sli (sluggish infections) were identified with defects in nodule invasion. Infection threads were found to proliferate abnormally in the nip mutant nodules with only very rare deposition of rhizobia within plant host cells. nip nodules were found to accumulate polyphenolic compounds, indicative of a host defense response. Interestingly, nip was also found to have defective lateral root …
Date: May 2005
Creator: Veereshlingam, Harita
System: The UNT Digital Library

Characterization of cDNA and Genomic Clones for a Palmitoyl-acyl Carrier Protein Thioesterase and an Osmotin-Like PR5 Protein in Gossypium Hirsutum.

Access: Use of this item is restricted to the UNT Community
Putative cotton cDNA clones and cognate genomic clones for a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE) and an osmotin-like pathogenesis-related 5 (PR5) protein have been isolated and characterized. PATE is a class B fatty acid thioesterase with specificity for saturated long-chain fatty acids such as palmitate, and is implicated as a key enzyme to be targeted for regulation of fatty acid synthesis in order to alter cotton seed oil profiles. A nearly full-length 1.7-kb cDNA clone was isolated using a hybridization probe derived from an Arabidopsis PATE cDNA clone designated TE 3-2. A 17-kb genomic segment encompassing the PATE gene was also isolated, which has six exons and five introns with high sequence identity with other FatB cDNA/gene sequences. The deduced PATE preprotein amino acid sequence of 413 residues has putative signal sequences for targeting to the chloroplast stroma. PR5 proteins called osmotins are made in response to fungal pathogen stress or osmotic stress (water deprivation or salt exposure). Osmotins may actually form pores in fungal membranes, leading to osmotic rupture and destruction of the fungal cells. A cotton osmotin-like PR5 cDNA insert of 1,052 base-pairs was isolated and shown to encode a preprotein of 242 amino acids and is …
Date: May 2002
Creator: Yoder, David W.
System: The UNT Digital Library