The Effects of Color Concentrate in Polyolefins.

Access: Use of this item is restricted to the UNT Community
Throughout history consumer products were generally manufactured from wood and metal. They either had to hold their natural color or become subject to painting. When plastics entered the industry, it was recognized for its ease of shaping, re-usability, physical properties and its low cost. One of plastics' greatest benefits is its ability to hold a given color from within allowing it to avoid use of paint. This paper will give a brief overview on the effects of pigments when incorporated in a polyolefin. It will provide a classification of the main types of pigments and how each effect the properties of the product through: crystallization, weatherability, opacity, coloristic values and of course viscosity.
Date: December 2001
Creator: Flora, Paul
System: The UNT Digital Library

Mineral-filled polypropylene: Improvement of scratch resistance

Access: Use of this item is restricted to the UNT Community
A potential alternative to acrylonitrile-butadiene-styrene (ABS) and polycarbonate+ABS (PC+ABS), pigmented mineral-filled polypropylene (PP) finds an opening in automotive interior components such as instrument panels, knee bolsters, consoles, etc. Because of the lack of surface aesthetics, pigmented mineral-filled PP is experiencing a limitation to its acceptance in many applications. This study focuses on exploring various mineral fillers and additives in polypropylene to provide a material with enhanced scratch resistance. Several physical properties including Rockwell and Shore D hardness are investigated, and it is determined that Filler W improves scratch resistance. It is also determined that Filler T-filled-PP has poor scratch resistance even with the addition of a lubricant.
Date: December 2001
Creator: Khatib, Jamal F.
System: The UNT Digital Library

Thermal, Electrical, and Structural Analysis of Graphite Foam

Access: Use of this item is restricted to the UNT Community
A graphite foam was developed at Oak Ridge National Laboratory (ORNL) by Dr. James Klett and license was granted to POCO Graphite, Inc. to manufacture and market the product as PocoFoam™. Unlike many processes currently used to manufacture carbon foams, this process yields a highly graphitic structure and overcomes many limitations, such as oxidation stabilization, that are routinely encountered in the development of carbon foam materials. The structure, thermal properties, electrical resistivity, isotropy, and density uniformity of PocoFoam™ were evaluated. These properties and characteristics of PocoFoam™ are compared with natural and synthetic graphite in order to show that, albeit similar, it is unique. Thermal diffusivity and thermal conductivity were derived from Fourier's energy equation. It was determined that PocoFoam™ has the equivalent thermal conductivity of metals routinely used as heat sinks and that thermal diffusivity is as much as four times greater than pure copper and pure aluminum. SEM and XRD results indicate that PocoFoam™ has a high degree of crystalline alignment and near theoretical d spacing that is more typical of natural flake graphite than synthetic graphite. PocoFoam™ is anisotropic, indicating an isotropy factor of 0.5, and may yield higher thermal conductivity at cryogenic temperatures than is observed in …
Date: August 2001
Creator: Morgan, Dwayne Russell
System: The UNT Digital Library

Characterizaton of Triethoxyfluorosilane and Tetraethoxysilane Based Aerogels

Access: Use of this item is restricted to the UNT Community
Aerogels are highly porous, low dielectric constant (low k) materials being considered by the semiconductor industry as an interlayer dielectric. Low k materials are needed to overcome capacitance problems that limit device feature sizes. Precursors triethoxyfluorosilane (TEFS) and tetraethoxysilane (TEOS) were used to prepare bulk aerogels. Samples were prepared by sol-gel methods, and then carbon dioxide supercritically-dried. Effects of varying the water to precursor ratio were studied with respect to aerogel properties and microstructure. Methods of analysis for this study include FTIR-ATR, TEM, RBS, EDS, SEM, dielectric constant determination by impedance and surface area by gas adsorption. Si-F bonds were determined to be present in both acid- and base-catalyzed TEFS as well as HF-catalyzed TEOS. Fluorine promotes a fractal network microstructure as opposed to a particle-like microstructure. Surface area and dielectric constant were determined to increase slightly with increases in the water to precursor ratio.
Date: December 2001
Creator: Roepsch, Jodi Ann
System: The UNT Digital Library