Characterization, Analysis, and Optimization of Rotary Displacer Stirling Engines

Access: Use of this item is restricted to the UNT Community
This work focuses on an innovative Rotary Displacer SE (RDSE) configuration for Stirling engines (SEs). RDSE features rotary displacers instead of reciprocating displacers (found in conventional SE configurations), as well as combined compression and expansion spaces. Guided by the research question "can RDSE as a novel configuration achieve a higher efficiency compared to conventional SE configurations at comparable operating conditions?", the goal of this study is to characterize, analyze, and optimize RDSE which is pursued in three technical stages. It is observed the RDSE prototype has an optimum phase angle of > 90° and thermal efficiency of 15.5% corresponding to 75.2% of the ideal (Carnot) efficiency at the source and sink temperatures of 98.6° C and 22.1° C, respectively. Initial results indicate that 125° phase angle provides more power than that of the theoretically optimum 90° phase angle. The results also show comparable B_n and significantly higher W_n values (0.047 and 0.465, respectively) compared to earlier studies, and suggest the RDSE could potentially be a competitive alternative to other SE configurations. Furthermore, due to lack of a regenerator, the non-ideal effects calculated in the analytical approach have insignificant impact (less than 0.03 kPa in 100 kPa). The clearance volume in …
Date: December 2019
Creator: Bagheri, Amirhossein
System: The UNT Digital Library

Investigations of the Fresnel Lens Based Solar Concentrator System through a Unique Statistical-Algorithmic Approach

Access: Use of this item is restricted to the UNT Community
This work investigates the Fresnel-lens-based solar concentrator-receiver system in a multi-perspective manner to design, test and fabricate this concentrator with high-efficiency photon and heat outputs and a minimized effect of chromatic aberrations. First, a MATLAB®-incorporated algorithm optimizes both the flat-spot and the curved lens designs via a statistical ray-tracing methodology of the incident light, considering all of its incidence parameters. The target is to maximize the solar ray intensity on the receiver's aperture, and therefore, achieve the highest possible focal flux. The algorithm outputs prismatic and dimensional geometries of the Fresnel-lens concentrator, which are simulated by COMSOL® Multiphysics to validate the design. For the second part, a novel genetically-themed hierarchical algorithm (GTHA) has been investigated to design Fresnel-lens solar concentrators that match with the distinct energy input and spatial geometry of various thermal applications. Basic heat transfer analysis of each application decides its solar energy requirement. The GTHA incorporated in MATLAB® optimizes the concentrator characteristics to secure this energy demand, balancing a minimized geometry and a maximized efficiency. Two experimental applications were selected from literature to validate the optimization process, a solar welding system for H13 steel plates and a solar Stirling engine with an aluminum-cavity receiver attached to the …
Date: December 2019
Creator: Qandil, Hassan Darwish Hassan
System: The UNT Digital Library