Degree Department

A Combined Theoretical and Experimental Study on Deposition of Solid State Materials (open access)

A Combined Theoretical and Experimental Study on Deposition of Solid State Materials

Deposition of solid state materials span a wide variety of methods and often utilize high energy sources such as plasmas and ultra-violet light resulting in a wide variety of characteristics and applications. A fundamental understanding is essential for furthering the applications of these materials which include catalysis, molecular filtration, electronics, sensing devices, and energy storage among others. A combination of experimental and theoretical work is presented here on several materials including 2D silicates on Pd, boron oxide, and vanadium oxynitride. Silicate formation under low energy electron microscopy demonstrate film permeability to oxygen, while ab initio molecular dynamics simulations reveal the possible initial mechanisms associated with the formation of boron oxide films during atomic layer deposition. Lastly, vanadium oxynitrides have shown preferential sputtering of N over O sites and theoretical binding energies serve as a guide for assigning experimental x-ray photoelectron spectra.
Date: August 2020
Creator: Lee, Veronica
System: The UNT Digital Library

Novel Metal-Containing Nanoparticle Composites for Cancer Therapy and Imaging

With all the improvements in cancer treatments, multidrug resistance is still the major challenge in treating cancer. Cells can develop multidrug resistance (MDR) during or after treatment, which will render the cancer cells resistant not only to the chemotherapy drug being used but also to many other structurally- and mechanically-different chemotherapeutics. In the first project, the main focus was on development of drug resistant cell lines by selection with taxol. Gene changes in the L1T2 cell line after treatment with Taxol was studied. Treatment of L1T2 cells with taxol leads to changes in the expression of ABC transporter proteins, whereas the combination of Taxol with protease inhibitors leads to increased efficacy via inhibition of P-glycoprotein (P-gp). In the second project, we showed that our innovatively-designed Au-loaded poly(lactide-co-glycolic acid) nanoparticles (GPLGA NPs) are able to cross biological barriers and deliver inside the cells without being recognized by the ABC protein transporter. (We focus specifically on P-gp-mediated drug efflux in a model of HEK cell lines.) The concentration of gold was measured using inductively-coupled plasma/mass spectrometry (ICP-MS) after 6- and 24-hour treatment of GPLGA NPs, which did not show significant increase of gold inside the cells in presence of the P-gp inhibitor …
Date: August 2020
Creator: Nasiri, Nooshin Mirza
System: The UNT Digital Library