Exploring Physical Unclonable Functions for Efficient Hardware Assisted Security in the IoT (open access)

Exploring Physical Unclonable Functions for Efficient Hardware Assisted Security in the IoT

Modern cities are undergoing rapid expansion. The number of connected devices in the networks in and around these cities is increasing every day and will exponentially increase in the next few years. At home, the number of connected devices is also increasing with the introduction of home automation appliances and applications. Many of these appliances are becoming smart devices which can track our daily routines. It is imperative that all these devices should be secure. When cryptographic keys used for encryption and decryption are stored on memory present on these devices, they can be retrieved by attackers or adversaries to gain control of the system. For this purpose, Physical Unclonable Functions (PUFs) were proposed to generate the keys required for encryption and decryption of the data or the communication channel, as required by the application. PUF modules take advantage of the manufacturing variations that are introduced in the Integrated Circuits (ICs) during the fabrication process. These are used to generate the cryptographic keys which reduces the use of a separate memory module to store the encryption and decryption keys. A PUF module can also be recon gurable such that the number of input output pairs or Challenge Response Pairs (CRPs) …
Date: May 2019
Creator: Yanambaka, Venkata Prasanth
System: The UNT Digital Library
A Study on Flat-Address-Space Heterogeneous Memory Architectures (open access)

A Study on Flat-Address-Space Heterogeneous Memory Architectures

In this dissertation, we present a number of studies that primarily focus on data movement challenges among different types of memories (viz., 3D-DRAM, DDRx DRAM and NVM) employed together as a flat-address heterogeneous memory system. We introduce two different hardware-based techniques for prefetching data from slow off-chip phase change memory (PCM) to fast on-chip memories. The prefetching techniques efficiently fetch data from PCM and place that data into processor-resident or 3D-DRAM-resident buffers without putting high demand on bandwidth and provide significant performance improvements. Next, we explore different page migration techniques for flat-address memory systems which differ in when to migrate pages (i.e., periodically or instantaneously) and how to manage the migrations (i.e., OS-based or hardware-based approach). In the first page migration study, we present several epoch-based page migration policies for different organizations of flat-address memories consisting of two (2-level) and three (3-level) types of memory modules. These policies have resulted in significant energy savings. In the next page migration study, we devise an efficient "on-the-fly'" page migration technique which migrates a page from slow PCM to fast 3D-DRAM whenever it receives a certain number of memory accesses without waiting for any specific time interval. Furthermore, we present a light-weight hardware-assisted …
Date: May 2019
Creator: Islam, Mahzabeen
System: The UNT Digital Library
A Data-Driven Computational Framework to Assess the Risk of Epidemics at Global Mass Gatherings (open access)

A Data-Driven Computational Framework to Assess the Risk of Epidemics at Global Mass Gatherings

This dissertation presents a data-driven computational epidemic framework to simulate disease epidemics at global mass gatherings. The annual Muslim pilgrimage to Makkah, Saudi Arabia is used to demonstrate the simulation and analysis of various disease transmission scenarios throughout the different stages of the event from the arrival to the departure of international participants. The proposed agent-based epidemic model efficiently captures the demographic, spatial, and temporal heterogeneity at each stage of the global event of Hajj. Experimental results indicate the substantial impact of the demographic and mobility patterns of the heterogeneous population of pilgrims on the progression of the disease spread in the different stages of Hajj. In addition, these simulations suggest that the differences in the spatial and temporal settings in each stage can significantly affect the dynamic of the disease. Finally, the epidemic simulations conducted at the different stages in this dissertation illustrate the impact of the differences between the duration of each stage in the event and the length of the infectious and latent periods. This research contributes to a better understanding of epidemic modeling in the context of global mass gatherings to predict the risk of disease pandemics caused by associated international travel. The computational modeling and …
Date: May 2019
Creator: Alshammari, Sultanah
System: The UNT Digital Library
Extracting Temporally-Anchored Spatial Knowledge (open access)

Extracting Temporally-Anchored Spatial Knowledge

In my dissertation, I elaborate on the work that I have done to extract temporally-anchored spatial knowledge from text, including both intra- and inter-sentential knowledge. I also detail multiple approaches to infer spatial timeline of a person from biographies and social media. I present and analyze two strategies to annotate information regarding whether a given entity is or is not located at some location, and for how long with respect to an event. Specifically, I leverage semantic roles or syntactic dependencies to generate potential spatial knowledge and then crowdsource annotations to validate the potential knowledge. The resulting annotations indicate how long entities are or are not located somewhere, and temporally anchor this spatial information. I present an in-depth corpus analysis and experiments comparing the spatial knowledge generated by manipulating roles or dependencies. In my work, I also explore research methodologies that go beyond single sentences and extract spatio-temporal information from text. Spatial timelines refer to a chronological order of locations where a target person is or is not located. I present corpus and experiments to extract spatial timelines from Wikipedia biographies. I present my work on determining locations and the order in which they are actually visited by a person …
Date: May 2019
Creator: Vempala, Alakananda
System: The UNT Digital Library
An Efficient Approach for Dengue Mitigation: A Computational Framework (open access)

An Efficient Approach for Dengue Mitigation: A Computational Framework

Dengue mitigation is a major research area among scientist who are working towards an effective management of the dengue epidemic. An effective dengue mitigation requires several other important components. These components include an accurate epidemic modeling, an efficient epidemic prediction, and an efficient resource allocation for controlling of the spread of the dengue disease. Past studies assumed homogeneous response pattern of the dengue epidemic to climate conditions throughout the regions. The dengue epidemic is climate dependent and also it is geographically dependent. A global model is not sufficient to capture the local variations of the epidemic. We propose a novel method of epidemic modeling considering local variation and that uses micro ensemble of regressors for each region. There are three regressors that are used in the construction of the ensemble. These are support vector regression, ordinary least square regression, and a k-nearest neighbor regression. The best performing regressors get selected into the ensemble. The proposed ensemble determines the risk of dengue epidemic in each region in advance. The risk is then used in risk-based resource allocation. The proposing resource allocation is built based on the genetic algorithm. The algorithm exploits the genetic algorithm with major modifications to its main components, …
Date: May 2019
Creator: Dinayadura, Nirosha
System: The UNT Digital Library
Methodical Evaluation of Processing-in-Memory Alternatives (open access)

Methodical Evaluation of Processing-in-Memory Alternatives

In this work, I characterized a series of potential application kernels using a set of architectural and non-architectural metrics, and performed a comparison of four different alternatives for processing-in-memory cores (PIMs): ARM cores, GPGPUs, coarse-grained reconfigurable dataflow (DF-PIM), and a domain specific architecture using SIMD PIM engine consisting of a series of multiply-accumulate circuits (MACs). For each PIM alternative I investigated how performance and energy efficiency changes with respect to a series of system parameters, such as memory bandwidth and latency, number of PIM cores, DVFS states, cache architecture, etc. In addition, I compared the PIM core choices for a subset of applications and discussed how the application characteristics correlate to the achieved performance and energy efficiency. Furthermore, I compared the PIM alternatives to a host-centric solution that uses a traditional server-class CPU core or PIM-like cores acting as host-side accelerators instead of being part of 3D-stacked memories. Such insights can expose the achievable performance limits and shortcomings of certain PIM designs and show sensitivity to a series of system parameters (available memory bandwidth, application latency and bandwidth sensitivity, etc.). In addition, identifying the common application characteristics for PIM kernels provides opportunity to identify similar types of computation patterns in …
Date: May 2019
Creator: Scrbak, Marko
System: The UNT Digital Library
Skin Detection in Image and Video Founded in Clustering and Region Growing (open access)

Skin Detection in Image and Video Founded in Clustering and Region Growing

Researchers have been involved for decades in search of an efficient skin detection method. Yet current methods have not overcome the major limitations. To overcome these limitations, in this dissertation, a clustering and region growing based skin detection method is proposed. These methods together with a significant insight result in a more effective algorithm. The insight concerns a capability to define dynamically the number of clusters in a collection of pixels organized as an image. In clustering for most problem domains, the number of clusters is fixed a priori and does not perform effectively over a wide variety of data contents. Therefore, in this dissertation, a skin detection method has been proposed using the above findings and validated. This method assigns the number of clusters based on image properties and ultimately allows freedom from manual thresholding or other manual operations. The dynamic determination of clustering outcomes allows for greater automation of skin detection when dealing with uncertain real-world conditions.
Date: August 2019
Creator: Islam, A B M Rezbaul
System: The UNT Digital Library
Application of Adaptive Techniques in Regression Testing for Modern Software Development (open access)

Application of Adaptive Techniques in Regression Testing for Modern Software Development

In this dissertation we investigate the applicability of different adaptive techniques to improve the effectiveness and efficiency of the regression testing. Initially, we introduce the concept of regression testing. We then perform a literature review of current practices and state-of-the-art regression testing techniques. Finally, we advance the regression testing techniques by performing four empirical studies in which we use different types of information (e.g. user session, source code, code commit, etc.) to investigate the effectiveness of each software metric on fault detection capability for different software environments. In our first empirical study, we show the effectiveness of applying user session information for test case prioritization. In our next study, we apply learning from the previous study, and implement a collaborative filtering recommender system for test case prioritization, which uses user sessions and change history information as input parameter, and return the risk score associated with each component. Results of this study show that our recommender system improves the effectiveness of test prioritization; the performance of our approach was particularly noteworthy when we were under time constraints. We then investigate the merits of multi-objective testing over single objective techniques with a graph-based testing framework. Results of this study indicate that the …
Date: August 2019
Creator: Azizi, Maral
System: The UNT Digital Library
Shepherding Network Security Protocols as They Transition to New Atmospheres: A New Paradigm in Network Protocol Analysis (open access)

Shepherding Network Security Protocols as They Transition to New Atmospheres: A New Paradigm in Network Protocol Analysis

The solutions presented in this dissertation describe a new paradigm in which we shepherd these network security protocols through atmosphere transitions, offering new ways to analyze and monitor the state of the protocol. The approach involves identifying a protocols transitional weaknesses through adaption of formal models, measuring the weakness as it exists in the wild by statically analyzing applications, and show how to use network traffic analysis to monitor protocol implementations going into the future. Throughout the effort, we follow the popular Open Authorization protocol in its attempts to apply its web-based roots to a mobile atmosphere. To pinpoint protocol deficiencies, we first adapt a well regarded formal analysis and show it insufficient in the characterization of mobile applications, tying its transitional weaknesses to implementation issues and delivering a reanalysis of the proof. We then measure the prevalence of this weakness by statically analyzing over 11,000 Android applications. While looking through source code, we develop new methods to find sensitive protocol information, overcome hurdles like obfuscation, and provide interfaces for later modeling, all while achieving a false positive rate of below 10 percent. We then use network analysis to detect and verify application implementations. By collecting network traffic from Android …
Date: December 2019
Creator: Talkington, Gregory Joshua
System: The UNT Digital Library
Event Sequence Identification and Deep Learning Classification for Anomaly Detection and Predication on High-Performance Computing Systems (open access)

Event Sequence Identification and Deep Learning Classification for Anomaly Detection and Predication on High-Performance Computing Systems

High-performance computing (HPC) systems continue growing in both scale and complexity. These large-scale, heterogeneous systems generate tens of millions of log messages every day. Effective log analysis for understanding system behaviors and identifying system anomalies and failures is highly challenging. Existing log analysis approaches use line-by-line message processing. They are not effective for discovering subtle behavior patterns and their transitions, and thus may overlook some critical anomalies. In this dissertation research, I propose a system log event block detection (SLEBD) method which can extract the log messages that belong to a component or system event into an event block (EB) accurately and automatically. At the event level, we can discover new event patterns, the evolution of system behavior, and the interaction among different system components. To find critical event sequences, existing sequence mining methods are mostly based on the a priori algorithm which is compute-intensive and runs for a long time. I develop a novel, topology-aware sequence mining (TSM) algorithm which is efficient to generate sequence patterns from the extracted event block lists. I also train a long short-term memory (LSTM) model to cluster sequences before specific events. With the generated sequence pattern and trained LSTM model, we can predict …
Date: December 2019
Creator: Li, Zongze
System: The UNT Digital Library