Degree Discipline

Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans (open access)

Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans

Ischemic events of even a very short duration are not tolerated Ill in humans. The human cost of ischemia, when looked at as combined cardiovascular disease, dwarfs all other causes of death in the United States. Annually, CVD kills as many people in the US as does cancer, chronic lower respiratory disease, accidents, and diabetes mellitus combined. In 2005 (the latest year for which final statistics are available), CVD was responsible for 864,480 deaths or 35.3 percent of total deaths for the year. In my study, I have used the nematode Caenorhabditis elegans to determine genetic and environmental modulators of oxygen deprivation a key component of ischemia. I have found that animals with mutations in insulin like signaling pathways, neuronal function, electron transport chain components, germline function, and animals that are preconditioned by being raised on a diet of E. coli HT115 bacteria at 25°C have an enhanced ability to survive long-term (>72 hours) anoxia (<.005 kPa O2) at 20°C. The enhanced anoxia survival phenotype partially correlates with increased levels of carbohydrate stores in the nematodes. Suppression of this enhanced anoxia survival phenotype is possible by altering expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, the FOXO transcription factor DAF-16, and …
Date: August 2010
Creator: LaRue, Bobby Lee, Jr.
System: The UNT Digital Library
Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764. (open access)

Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Cyanide is a well known toxicant that arises in the environment from both biological and industrial sources. Bacteria have evolved novel coping mechanisms for cyanide and function as principal agents in the biosphere for cyanide recycling. Some bacteria exhibit the unusual ability of growing on cyanide as the sole nitrogen source. One such organism is Pseudomonas fluorescens NCIMB 11764 (Pf11764) which employs a novel oxidative mechanism for detoxifying and assimilating cyanide. A unique complex of enzymes referred to as cyanide oxygenase (CNO) is responsible for this ability converting cyanide to ammonia which is then assimilated. Because one component of the four member CNO complex was previously shown to act on cyanide independent of the other members, its characterization was sought as a means of gaining a better understanding of the overall catalytic mechanism of the complex. Preliminary studies suggested that the enzyme belonged to a subset of nitrilase enzymes known as cyanide dihydratases (CynD), however, a cynD-like gene in Pf11764 could not be detected by PCR. Instead, a separate nitrilase (Nit) linked to cyanide metabolism was detected. The corresponding nit gene was shown to be one of a conserved set of nit genes traced to a unique cluster in bacteria …
Date: December 2010
Creator: Chou, Chia-Ni
System: The UNT Digital Library
Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme (open access)

Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme

The aspartate transcarbamoylase (ATCase) was purified from Burkholderia cepacia 25416. In the course of purification, three different ATCase activities appeared namely dodecameric 550 kDa holoenzyme, and two trimeric ATCases of 140 kDa (consists of 47 kDa PyrB subunits) and 120 kDa (consists of 40 kDa PyrB subunits) each. The 120 kDa PyrB polypeptide arose by specific cleavage of the PyrB polypeptide between Ser74 and Val75 creating an active polypeptide short by 74 amino acids. Both the 40 and 47 kDa polypeptides produced active trimers. To compare the enzyme activity of these trimers, an effector assay using nucleotides was performed. The 140 kDa trimer showed inhibition while the 120 kDa polypeptide showed less inhibition. To verify the composition of the pyrBC holoenzyme complex, B. cepacia dihydroorotase (DHOase, subunit size of 45 kDa) was purified by the pMAL protein fusion and purification system and holoenzyme reconstruction was performed using purified ATCase and DHOase. Both the 140 kDa and the 120 kDa trimers could produce holoenzymes of 550 kDa and 510 kDa, respectively. The reconstructed ATCase holoenzyme from cleaved ATCase showed better reconstruction compared to that from uncleaved ATCase in the conventional ATCase activity gel assay. To characterize the relationship between pyrimidine pathway …
Date: December 2010
Creator: Kim, Hyunju
System: The UNT Digital Library
Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle (open access)

Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Super-resolution 3D imaging was achieved using newly synthesized photoactivatable quantum dot (PAQ dot) probes. Quantum dots were modified with a novel quencher system to make them photoactivatable. The unique properties of these PAQ dots enable single-fluorophore localization in three dimensions using a confocal microscopy optical sectioning method. Myosin and tropomyosin of rabbit myofibrilar bundles were specifically labeled with the newly synthesized PAQ dot. A sufficient number of single quantum dots were photoactivated, localized and reduced to their centroid and then reconstructed to a super-resolution image. The acquired super-resolution image shows a lateral and an axial sub-diffraction resolution and demonstrates ultrafine striations with widths less than 70 nm that are not evident by conventional confocal microscopy. The striations appear to be related to nebulin thin filament binding protein. This newly developed imaging system is cutting edge for its high resolution and localization as well its simplicity and convenience.
Date: December 2010
Creator: Akel, Amal
System: The UNT Digital Library
DNA Degradation as an Indicator of Post-Mortem Interval (open access)

DNA Degradation as an Indicator of Post-Mortem Interval

The question of post-mortem interval (PMI) or time since death is often the most sought after piece of information associated with a medical death investigation. Based on the observation that DNA degradation disproportionately affects the analysis of larger genetic loci, it was proposed that DNA degradation, as a result of autolysis or putrefaction, could prove suitable as a potential rate-of-change indicator of PMI. Nine randomly amplified polymorphic DNA (RAPD) analysis primers and three sets of directed amplification primers were evaluated to determine their suitability for use in assessing the degree of DNA fragmentation in tissue samples. They were assessed for amplicon specificity, total DNA target sensitivity, allele monomorphism and the observance of degradation-based profile changes. Markers meeting the requisite criteria were then used to assess a range samples degraded under controlled and uncontrolled conditions. Tissue samples collected from seven domestic pigs (Sus scrofa) were incubated under controlled laboratory or uncontrolled field conditions to produce samples simulating those potentially collected in a forensic case. DNA samples isolated from these specimens were then analyzed at those loci which had been determined to meet the requisite criteria. Collectively, data generated from these analyses indicate that genetic profiles generated by this approach can provide …
Date: August 2010
Creator: Watson, William H.
System: The UNT Digital Library
Virulence Factor Production in PyrE Mutants of Pseudomonas Aeruginosa (open access)

Virulence Factor Production in PyrE Mutants of Pseudomonas Aeruginosa

It has been shown previously in our lab that mutations in the pyrimidine pathway reduced the ability of Pseudomonas aeruginosa to produce virulence factors. Knockout mutations in pyrB, pyrC and pyrD genes of the pyrimidine pathway showed that virulence factor production was decreased. Pyoverdin, pyocyanin, hemolysin, iron chelation, motility, and adherence are all considered virulence factors. Here I further investigate the effects of mutations in the pyrimidine pathway by studying a pyrE mutant. I studied the effect of the pyrE mutation on the production of the above virulence factors. Just like the effect of pyrB, pyrC and pyrD mutations,the pyrE mutation also showed that the bacteria were deficient in producing virulence factors when compared to the wild type. The broader impact of this research would be the possibility of finding drugs that could treat patients infected with P. aeruginosa and possibly extend the lives of chronically infected patients with cystic fibrosis.
Date: May 2010
Creator: Niazy, Abdurahman
System: The UNT Digital Library