Degree Discipline

Investigations of neuronal network responses to electrical stimulation in murine spinal cultures. (open access)

Investigations of neuronal network responses to electrical stimulation in murine spinal cultures.

Spontaneous activity in neuronal networks in vitro is common and has been well documented. However, alteration of spontaneous activity in such networks via conditioning electrical stimulation has received much less experimental attention. Two different patterns of electrical stimulation were used to enhance or depress the level of spontaneous activity in spinal cord cultures. High-frequency stimulation (HFS), a method routinely shown to increase the efficacy of synaptic transmission, was employed to augment spontaneous activity. Low-frequency stimulation (LFS), the technique often applied to depress synaptic efficacy, was employed to decrease spontaneous activity. In addition, LFS was used to reverse the effect of HFS on spontaneous activity. Likewise, HFS was applied to counter the effect of LFS. Because these networks were grown on multi-microelectrode plates (MMEPs), this allowed the simultaneous stimulation of any combination of the 64 electrodes in the array. Thus, the possible differences in response to single versus multi-electrode stimulation were also addressed. Finally, test-pulses were delivered before and after the conditioning stimulation on the same stimulation electrode(s) in order to assess the change in mean evoked action potentials (MEAPs). Dissociated spinal tissue from embryonic mice was allowed to mature into self-organized networks that exhibited spontaneous bursting activity after two weeks …
Date: December 2001
Creator: Sparks, Christopher A.
System: The UNT Digital Library
Life History and Secondary Production of Caenis latipennis Banks (Ephemeroptera: Caenidae) in Honey Creek, Oklahoma (open access)

Life History and Secondary Production of Caenis latipennis Banks (Ephemeroptera: Caenidae) in Honey Creek, Oklahoma

A study of the life history and secondary production of Caenis latipennis, a caenid mayfly, was conducted on Honey Creek, OK. from August 1999 through September 2000. The first instar nymph was described. Nymphs were separated into five development classes. Laboratory egg and nymph development rates, emergence, fecundity, voltinism, and secondary production were analyzed. C. latipennis eggs and nymphs take 132 and 1709 degree days to develop. C. latipennis had an extended emergence with five peaks. Females emerged, molted, mated, and oviposited in an estimated 37 minutes. Mean fecundity was 888.4 ± 291.9 eggs per individual (range 239 -1576). C. latipennis exhibited a multivoltine life cycle with four overlapping generations. Secondary production was 6,052.57 mg/m2/yr.
Date: August 2001
Creator: Taylor, Jason M.
System: The UNT Digital Library
Unique applications of cultured neuronal networks in pharmacology, toxicology, and basic neuroscience (open access)

Unique applications of cultured neuronal networks in pharmacology, toxicology, and basic neuroscience

This dissertation research explored the capabilities of neuronal networks grown on substrate integrated microelectrode arrays in vitro with emphasis on utilizing such preparations in three specific application domains: pharmacology and drug development, biosensors and neurotoxicology, and the study of burst and synaptic mechanisms. Chapter 1 details the testing of seven novel AChE inhibitors, demonstrating that neuronal networks rapidly detect small molecular differences in closely related compounds, and reveal information about their probable physiological effects that are not attainable through biochemical characterization alone. Chapter 2 shows how neuronal networks may be used to classify and characterize an unknown compound. The compound, trimethylol propane phosphate (TMPP) elicited changes in network activity that resembled those induced by bicuculline, a known epileptogenic. Further work determined that TMPP produces its effects on network activity through a competitive inhibition of the GABAA receptor. This demonstrates that neuronal networks can provide rapid, reliable warning of the presence of toxic substances, and from the manner in which the spontaneous activity changes provide information on the class of compound present and its potential physiological effects. Additional simple pharmacological tests can provide valuable information on primary mechanisms involved in the altered neuronal network responses. Chapter 3 explores the effects produced …
Date: May 2001
Creator: Keefer, Edward W.
System: The UNT Digital Library
A Study of the Pyrimidine Biosynthesis Pathway and its Regulation in Two Distinct Organisms:  Methanococcus jannaschii and Pseudomonas aeruginosa (open access)

A Study of the Pyrimidine Biosynthesis Pathway and its Regulation in Two Distinct Organisms: Methanococcus jannaschii and Pseudomonas aeruginosa

Methanococcus jannaschii is a thermophilic methane producing archaebacterium. In this organism genes encoding the aspartate transcarbamoylase (ATCase) catalytic (PyrB) and regulatory (PyrI) polypeptides were found. Unlike Escherichia coli where the above genes are expressed from a biscistronic operon the two genes in M. jannaschii are separated by 200-kb stretch of genome. Previous researchers have not been able to show regulation of the M. jannaschii enzyme by the nucleotide effectors ATP, CTP and UTP. In this research project we have genetically manipulated the M. jannaschii pyrI gene and have been able to assemble a 310 kDa E. coli like enzyme. By using the second methionine in the sequence we have shown that the enzyme from this organism can assemble into a 310 kDa enzyme and that this enzyme is activated by ATP, CTP and inhibited by UTP. Thus strongly suggesting that the second methionine is the real start of the gene. The regulation of the biosynthetic pathway in Pseudomoans aeruginosa has previously been impossible to study due to the lack of CTP synthase (pyrG) mutants. By incorporating a functional uridine (cytidine) kinase gene from E. coli it has been possible to isolate a pyrG mutant. In this novel mutant we have …
Date: December 2001
Creator: Patel, Seema R.
System: The UNT Digital Library
Age-Dependent Effects Of Chronic GABAA  Receptor Blockade In Barrel Cortex (open access)

Age-Dependent Effects Of Chronic GABAA Receptor Blockade In Barrel Cortex

GABAA receptor binding is transiently increased in rat whisker barrels during the second postnatal week, at a time when neurons in the developing rat cortex are vulnerable to excitotoxic effects. To test whether these GABAA receptors might serve to protect neurons from excessive excitatory input, polymer implants containing the GABAA receptor antagonist bicuculline were placed over barrel cortex for a 4-day period in young (postnatal days 8 - 12) and adult rats. In the cortex of young, but not adult rats, the chronic blockade of GABAA receptors resulted in substantial tissue loss and neuron loss. The greater loss of neurons in young rats supports the hypothesis that a high density of GABAA receptors protects neurons from excessive excitatory input during a sensitive period in development.
Date: May 2001
Creator: Gargan, Lynn
System: The UNT Digital Library