Cross-Conjugation Effects on Fused β, β'–π–Extended Porphyrins (open access)

Cross-Conjugation Effects on Fused β, β'–π–Extended Porphyrins

Cross-conjugation in molecules has been seen in nature for many years but was not pursued due to the difficulty of their synthesis and their lack of stability. Recently, it has become more interesting due to the rise of molecular electronics. Linear conjugation serves well as the wires to conduct electrons, but molecular electronics are made up of more than just wires. Molecules are needed that possess an on/off switch that can allow or deter conduction. Cross-conjugated systems show promise in their ability to be turned on or off from external stimuli. Pentacene quinone is a well-known cross-conjugated molecule that already shows promise in the field of molecular semiconductors. By synthetically fusing the pentacene quinone to the β, β' positions of a porphyrin, it has been shown that both the solubility and stability have been greatly improved. This has allowed us to pursue functionalization of the quinone moiety. Several new cross-conjugated pentacene quinone fused porphyrin systems were synthesized and studied. It was found that cross-conjugated platinum porphyrins show enhanced fluorescence, and phosphorescence that shifts toward the Near IR. Additionally, strong electron withdrawing groups show potential in charge transfer, and a lower HOMO to LUMO gap, while mildly withdrawing groups have a …
Date: December 2023
Creator: Washburn, Spenser L.
System: The UNT Digital Library
Kinetics and Atmospheric Chemistry Studies of Halogenated Species (open access)

Kinetics and Atmospheric Chemistry Studies of Halogenated Species

Quantitative information about halogenated hydrocarbons is important for understanding their impact on atmospheric ozone chemistry and climate change, their regulation, and the devising of improved substitutes. The Montreal Protocol aimed to regulate the utilization and manufacturing of hydrochlorofluorocarbon compounds (HCFCs), contributing to ozone layer depletion. The 2016 Kigali Amendment to the Montreal Protocol agreement, Annex C listed 274 HCFCs. Only 16 of them have been measured experimentally. The rest were set to zero by default. These reported global warming potentials (GWPs) play a crucial role in formulating policies for gradually reducing the usage and production of HCFCs to prevent atmospheric impact. Here we are studying 1-chloro-1-fluoro-ethane (CH3CHFCl) as a test of past theory. There are no prior experimental measurements of the reactivity of CH3CHFCl with hydroxyl (OH) radicals, which primarily determines its atmospheric lifetime, nor of its infrared (IR) spectrum. Saturated hydrofluorocarbons (HFCs) are non-ozone depleting substitutes for chlorofluorocarbons deprecated under the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer, but they exhibit high global warming potentials (GWPs) and the Kigali Amendment adopted in 2016 outlines their phase down. Unsaturated HFCs offer more reactive alternatives, whose likely short atmospheric lifetimes would imply small GWPs. Because their GWPs are …
Date: December 2023
Creator: Sapkota, Ramesh
System: The UNT Digital Library

Design and Development of a Paper Spray Air Sampling Device for Use in Clinical, Defense, and Environmental Applications

Environmental monitoring is becoming increasingly important, primarily in urban areas due to the concentrated levels of human activities. The air sampling device presented is a novel method to sample air which harnesses the power of paper spray ionization paired with the intrinsic advantages of mass spectrometry such as high sensitivity, high selectivity, high throughput, and the ability to monitor multiple compounds at once.
Date: December 2023
Creator: Murillo, Wilbert Alberto
System: The UNT Digital Library

Nitrogen Reduction Reaction: Deposition, Characterization and Selectivity of Transition Metal (V, Co and Ti) Oxynitrides as Electrocatalysts

The electrocatalytic nitrogen reduction reaction (NRR) is of considerable interest due to its potential for less energy intensive and environmentally friendly ammonia production which is critical for agricultural and clean energy applications. However, the selectivity of NRR compared to the hydrogen evolution reaction (HER) often poses challenges for various catalysts, including Earth-abundant transition metal oxynitrides like Ti, V, and Co. In this work, a comparative analysis of the selectivity of these three metal oxynitrides was conducted, each having different metal oxophilicities. A combination of electrochemical, surface characterizations and density functional theory (DFT) calculations were employed to directly assess NRR and HER activities under the same reaction conditions. Results show that cobalt oxynitrides exhibit NRR activity at pH 10, involving the electrochemical reduction of both lattice-bound nitrogen and dissolved N2, although more HER activity was observed. In contrast, vanadium oxynitride films displayed HER inactivity at pH 7 and 10 but demonstrated NRR activity at pH 7, while titanium oxynitrides were active at pH 3.2 but inactive under neutral and basic pH conditions. These comprehensive studies highlight substantial variations in HER and NRR selectivity based on transition metal oxophilicity/azaphilicity, indicating distinct mechanisms governing NRR and HER mechanisms.
Date: December 2023
Creator: Chukwunenye, Precious O.
System: The UNT Digital Library
Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins (open access)

Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins

A series of acene-fused porphyrins and 1,10-phenanthroline-fused porphyrins were synthesized and characterized via NMR spectroscopy and mass spectrometry. The acene-fused porphyrins exhibit unique optoelectronic properties, most notably they exhibit highly red-shifted absorption bands. The 1,10-phenanthroline-fused porphyrins are of interest for their ability to bond to as variety of metals to form chelation complexes.
Date: December 2023
Creator: Arvidson, Jacob Randall
System: The UNT Digital Library

A Computational Study of Palladium (II) bis(NHC) Complexes and a Computational/Experimental Study of Gold (I) bisADC Complexes Utilizing Non-Covalent Interaction for Catalysis

Carbene ligands over these years have become a heavily utilizes and effective ligand for catalysis. The diamino carbene class of ligands are slightly less understood. The effects of bis(carbene) ligand structures of palladium (II) catalysts were investigated using the ETS-NOCV method. The results showed that the amount of π-backbonding played a major role in the rate of the reaction for these NHC complexes. The amount of pi acceptance from the ligand increased in correlation to the length of the methylene linkage in the ligand back bone resulting in increased catalytic activity. The ETS-NOCV method was used to determine the deformation densities that had a contribution to this interaction based on visual interpretation. The percent contribution of pi interactions provided a linear correlation to the natural log of the initial reaction rate, indicating that π-backbonding plays a crucial role in the overall catalytic activity of the palladium complexes. Gold (I) bis acyclic diamino carbenes (ADCs) were investigated for the possibility to be strong hydrogen bond catalysts. The ligand motif of the gold (I) bisADCs were found to be analogous thiourea compounds. Based on NBO analysis there were some improvements to hydrogen bond donicity in comparison to thioureas with the same functional …
Date: July 2023
Creator: Tiemann, Matthew Austin
System: The UNT Digital Library
Metal Nitride Complexes as Potential Catalysts for C-H and N-H Bonds Activation (open access)

Metal Nitride Complexes as Potential Catalysts for C-H and N-H Bonds Activation

Recognizing the dual ability of the nitride ligand to react as a nucleophile or an electrophile – depending on the metal and other supporting ligands – is a key to their broad-range reactivity; thus, three DFT studies were initiated to investigate these two factors effects (the metal and supporting ligands) for tuning nitride ligand reactivity for C-H and N-H bond activation/functionalization. We focused on studying these factors effects from both a kinetic and thermodynamic perspective in order to delineate new principles that explain the outcomes of TMN reactions. Chapter 2 reports a kinetic study of C–H amination of toluene to produce a new Csp3–N (benzylamine) or Csp2–N (para-toluidine) bond activated by diruthenium nitride intermediate. Studying three different mechanisms highlighted the excellent ability of diruthenium nitride to transform a C-H bond to a new C-N bond. These results also revealed that nitride basicity played an important role in determining C–H bond activating ability. Chapter 3 thus reports a thermodynamic study to map basicity trends of more than a one hundred TMN complexes of the 3d and 4d metals. TMN pKb(N) values were calculated in acetonitrile. Basicity trends decreased from left to right across the 3d and 4d rows and increases from …
Date: December 2023
Creator: Alharbi, Waad Sulaiman S.
System: The UNT Digital Library

Homoleptic and Heteroleptic Platinum(II) Complexes for Organic Light Emitting Diodes and Humidity Sensors: Synthesis, Characterization, and Applications

This dissertation focuses on the design, synthesis, characterization of platinum (II) pyridylazolate complexes and develop high performance organic light emitting diodes (OLEDs) and design and execute high-sensitivity humidity sensors based on the luminescent metal-organic complexes of platinum. A majority of existing platinum compounds do not dissolve in organic solvents, making it difficult to analyze the photophysical characteristics of complexes in solution, a key part of understanding chemical photophysical properties. Furthermore, due to the poor quantum yield, it is inefficient for use in devices such as OLEDs. Chapter 2 reports the synthesis and characterization of a novel heteroleptic platinum(II) pyridylazolate complex with high solubility and quantum yield. The photochemistry of the complex is studied, including efficiency, emission profiles, and lifetimes at different temperatures. Chapter 3 reports the power efficiency (lm/W), current efficiency (cd/A), external quantum efficiency (EQE), luminance and operating voltage (V) of OLED devices made with the heteroleptic platinum(II) pyridylazolate complex. The relation between thickness of hole transport layer and electron transport layer on performance of devices has been studied through building a variety of devices. Chapter 4 includes application of a homoleptic platinum(II) pyridylazolate complex in humidity sensor. In many environments, the relationship between moisture content and emissive wavelength …
Date: December 2023
Creator: Farvid, Seyedmajid
System: The UNT Digital Library