Degree Discipline

Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS) (open access)

Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS)

This study addressed five key applications of paper spray mass spectrometry (PS-MS): (i) comparative analysis of the microporous substrate with the cellulose-based substrate in drug detection; (ii) detection of more than 190 fentanyl analogs with their fragmentation pattern can be implemented in the future reference for quicker, accurate and sensitive determination; (iii) exploring sweat in a fingerprint to be considered an alternate method to recognize non-invasive markers of metabolites, lipids, narcotics, and explosive residues that can be used in forensic testing applications; (iv) extending and improving better, cost-effective and quick real-time monitoring of the diseased stage using biofluid samples to obtain vastly different lipid information in viral infection such as COVID-19; and (v) mass spectral detection in chemical warfare agent (CWA) stimulant gas exposure with microporous structure absorbency capabilities in air quality monitoring. This novel synthetic material is known as Teslin® (PPG Industries), consisting of a microporous polyolefin single-layered silica matrix, can be used for precise, sensitive, selective, and rapid sample analysis with PS-MS. The Teslin® substrate provided longer activation time for samples and an active signal with a higher concentration of ion formation and mobility compared to cellulose-based papers. Direct analysis of multiple samples showed that, besides being more …
Date: December 2020
Creator: Weligamage De Silva, Imesha
System: The UNT Digital Library
Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping Applications (open access)

Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping Applications

The deposition of boron oxide (B₂O₃) films on silicon substrates is of significant interest in microelectronics for ultrashallow doping applications. However, thickness control and conformality of such films has been an issue in high aspect ratio 3D structures which have long replaced traditional planar transistor architectures. B₂O₃ films are also unstable in atmosphere, requiring a suitable capping barrier for passivation. The growth of continuous, stoichiometric B₂O₃ and boron nitride (BN) films has been demonstrated in this dissertation using Atomic Layer Deposition (ALD) and enhanced ALD methods for doping and capping applications. Low temperature ALD of B₂O₃ was achieved using BCl₃/H₂O precursors at 300 K. In situ x-ray photoelectron spectroscopy (XPS) was used to assess the purity and stoichiometry of deposited films with a high reported growth rate of ~2.5 Å/cycle. Free-radical assisted ALD of B₂O₃ was also demonstrated using non-corrosive trimethyl borate (TMB) precursor, in conjunction with mixed O₂/O-radical effluent, at 300 K. The influence of O₂/O flux on TMB-saturated Si surface was investigated using in situ XPS, residual gas analysis mass spectrometer (RGA-MS) and ab initio molecular dynamics simulations (AIMD). Both low and high flux regimes were studied in order to understand the trade-off between ligand removal and B₂O₃ …
Date: December 2020
Creator: Pilli, Aparna
System: The UNT Digital Library
Computational Study of C−H/C−C Activation and Functionalization with Nitrene, Carbene and Related Complexes (open access)

Computational Study of C−H/C−C Activation and Functionalization with Nitrene, Carbene and Related Complexes

This dissertation involves inorganic/organometallic catalysis models, in particular the functionalization of carbon-hydrogen and carbon-carbon bonds. Computational methods have been utilized to better understand the factors affecting the kinetics and thermodynamics of C−H and C−C bond activation/functionalization in this dissertation. Chapter 2 investigates methane C−H activation with a diiminopyridine nitride/nitridyl complex of 3d transition metals and main group elements via three competing pathways: 1,2-addition/[2 + 2] addition, insertion and H-atom abstraction/proton coupled electron transfer. Chapter 3 investigates a transition metal catalyzed C=C bond functionalization involving C−N bond formations to synthesize aziridines from aromatic and aliphatic alkenes. The study focuses on anionic 3d transition metal (M = Mn, Fe, Co and Ni) triphenylamide-amine complexes with nitrene active intermediates for the aziridination reactions. Chapter 4 investigates a disphenoidal Ni(II) azido complex participating in intramolecular C−H functionalization and amination via a putative Ni nitridyl intermediate and a 1,2-addition/[2 + 2] addition pathway. In Chapter 5, methane oxidative addition to the Cp*ML (Cp* = η5-C5Me5; M = Co, Rh, Ir , L = CO, PMe3) motif is compared and contrasted when the classic CO and PMe3 ligands are replaced with the cyclic alkyl(amino) carbene (CAAC) as ancillary ligands.
Date: December 2020
Creator: Sun, Zhicheng
System: The UNT Digital Library
Mass Spectrometry Guided Development of a Controlled Release Nanotransfersome Transdermal Drug Delivery System (open access)

Mass Spectrometry Guided Development of a Controlled Release Nanotransfersome Transdermal Drug Delivery System

Poor medical adherence attributed to patient compliance has impacted the medical community, at times, in a deleterious fashion. To combat this, the medical community has attempted to provide therapeutics in the form of absorption enhancing techniques. To improve the absorption rate techniques such as drug encapsulation using proteins, liposomes, or nanotransfersomes have been developed using mass spectrometry. These techniques, have aided in the enhanced absorption of analytes with low bioavailability, including curcumin, simvastatin, and lysozyme. Specifically, mass spectrometry allows for the development and monitoring of nanotransfersome encapsulated analytes and the permeation across the dermal membrane. This transdermal delivery would eliminate the problems encountered during first pass metabolism, while allowing for higher concentrations of analyte to be maintained in the blood serum. This can be coupled to a thermosensitive gelatin that provides for a dose control mechanism to be accomplished, allowing multiple doses to be delivered using one transdermal patch system. The novel delivery system developed using mass spectrometry, allows the analyte to be delivered into the circulatory system at a controlled dosage, via transdermal absorption. This system will aid in eliminating problems associated with patient compliance, as the patient is no longer reliant on memory to self-dose. Further, this system …
Date: December 2020
Creator: Kiselak, Thomas Dieter
System: The UNT Digital Library