The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters (open access)

The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters

The Abraham solvation model (ABSM) is an experimentally derived predictive model used to help predict various solute properties. This work covers various uses for the ABSM including predicting molar enthalpies of vaporization, predicting solvent coefficients for two new solvents (2,2,5,5-tetramethyloxolane and diethyl carbonate), predicting values for multiple new ionic liquids (ILs). This work also introduces a novel method for updating IL ABSM parameters by updating cation- and anion-specific values using linear algebra and binary matrices.
Date: May 2021
Creator: Churchill, Brittani N.
System: The UNT Digital Library
Activation of Small Molecules by Transition Metal Complexes via Computational Methods (open access)

Activation of Small Molecules by Transition Metal Complexes via Computational Methods

The first study project is based on modeling Earth abundant 3d transition-metal methoxide complexes with potentially redox-noninnocent ligands for methane C–H bond activation to form methanol (LnM-OMe + CH4 → LnM–Me + CH3OH). Three types of complex consisting of tridentate pincer terpyridine-like ligands, and different first-row transition metals (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) were modeled to elucidate the reaction mechanism as well as the effect of the metal identity on the thermodynamics and kinetics of a methane activation reaction. The calculations showed that the d electron count of the metal is a more significant factor than the metal's formal charge in controlling the thermodynamics and kinetics of C–H activation. These researches suggest that late 3d-metal methoxide complexes that favor σ-bond metathesis pathways for methane activation will yield lower barriers for C–H activation, and are more profitable catalyst for future studies. Second, subsequently, on the basis of the first project, density functional theory is used to analyze methane C−H activation by neutral and cationic nickel-methoxide complexes. This study identifies strategies to further lower the barriers for methane C−H activation through evaluation of supporting ligand modifications, solvent polarity, overall charge of complex, metal identity and counterion …
Date: May 2020
Creator: Najafian, Ahmad
System: The UNT Digital Library
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions (open access)

Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Date: May 1970
Creator: Hoff, Edwin Frank
System: The UNT Digital Library
An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University. (open access)

An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University.

The science-major General Chemistry sequence offered at the University of Houston has been investigated with respect to the effectiveness of recent incorporation of various levels of computer technology. As part of this investigation, questionnaire responses, student evaluations and grade averages and distributions from up to the last ten years have been analyzed and compared. Increased use of web-based material is both popular and effective, particularly with respect to providing extra information and supplemental questions. Instructor contact via e-mail is also well-received. Both uses of technology should be encouraged. In contrast, electronic classroom presentation is less popular. While initial use may lead to improved grades and retention, these levels decrease quickly, possibly due to a reduction in instructor spontaneity.
Date: May 2002
Creator: McGuffey, Angela
System: The UNT Digital Library
The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry (open access)

The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry

The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Date: May 1993
Creator: Talasek, Robert Thomas
System: The UNT Digital Library
Applications of Single Reference Methods to Multi-Reference Problems (open access)

Applications of Single Reference Methods to Multi-Reference Problems

Density functional theory is an efficient and useful method of solving single-reference computational chemistry problems, however it struggles with multi-reference systems. Modifications have been developed in order to improve the capabilities of density functional theory. In this work, density functional theory has been successfully applied to solve multi-reference systems with large amounts of non-dynamical correlation by use of modifications. It has also been successfully applied for geometry optimizations for lanthanide trifluorides.
Date: May 2015
Creator: Jeffrey, Chris C.
System: The UNT Digital Library
Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces (open access)

Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces

The direct epitaxial growth of multilayer BN by atomic layer deposition is of critical significance forfo two-dimensional device applications. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) demonstrate layer-by-layer BN epitaxy on two different substrates. One substrate was a monolayer of RuO2(110) formed on a Ru(0001) substrate, the other was an atomically clean Ni(111) single crystal. Growth was accomplished atomic layer deposition (ALD) cycles of BCl3/NH3 at 600 K substrate temperature and subsequent annealing in ultrahigh vacuum (UHV). This yielded stoichiometric BN layers, and an average BN film thickness linearly proportional to the number of BCl3/NH3 cycles. The BN(0001)/RuO2(110) interface had negligible charge transfer or band bending as indicated by XPS and LEED data indicate a 30° rotation between the coincident BN and oxide lattices. The atomic layer epitaxy of BN on an oxide surface suggests new routes to the direct growth and integration of graphene and BN with industrially important substrates, including Si(100). XPS and LEED indicated epitaxial deposition of h-BN(0001) on the Ni(111) single crystal by ALD, and subsequent epitaxially aligned graphene was deposited by chemical vapor deposition (CVD) of ethylene at 1000 K. Direct multilayer, in situ growth of h-BN on magnetic substrates such as …
Date: May 2020
Creator: Jones, Jessica C.
System: The UNT Digital Library
Chlorosulfonic Acid Reactions with Saturated Hydrocarbons (open access)

Chlorosulfonic Acid Reactions with Saturated Hydrocarbons

This thesis examines the reactions of hydrocarbons exposed to chlorosulfonic acid in order to establish the reaction rate and associated molecular structure of each compound.
Date: May 1939
Creator: Stubblefield, H. L.
System: The UNT Digital Library

Cleaner Futures: Covalent Organic Frameworks for Sustainable Degradation of Lignocellulosic Materials

As countries pledge their commitment to a net-zero future, much of the previously forgotten climate change research were revitalized by efforts from both governmental and private sectors. In particular, the utilization of lignocellulosic materials saw a special spotlight in research interest for its abundance and its carbon removal capability during photosynthesis. The initial effort in mimicking enzymatic active sites of β-glucosidase will be explored. The crystalline covalent organic frameworks (COFs) allowed for the introduction of a variety of noncovalent interactions, which enhanced the adsorption and the catalytic activity against cellobiose and its glycosidic bonds. The physical processes associated with this reaction, such as the kinetics, equilibrium, and activation energies, will be closely examined and compared with existing standard materials and comparable advanced catalysts. In addition, several variants of COFs were synthesized to explore the effect of various noncovalent interactions with cellobiose. A radical-bearing COF was synthesized and characterized. The stability of this radical was examined by electron paramagnetic resonance spectroscopy (EPR) and its oxidative capability tested with model lignin and alcoholic compounds. The reaction products are monitored and identified using gas chromatography-mass spectroscopy (GC-MS). An oxidative coupling of phenol was explored, and its initial results are presented in chapter 5.
Date: May 2023
Creator: Lan, Pui Ching
System: The UNT Digital Library
Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry (open access)

Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Web-based homework systems are becoming more common in general chemistry as instructors face ever-increasing enrollment. Yet providing meaningful feedback on assignments remains of the utmost importance. Chemistry instructors consider completion of homework integral to students' success in chemistry, yet only a few studies have compared the use of Web-based systems to the traditional paper-and-pencil homework within general chemistry. This study compares the traditional homework system to four different Web-based systems. Data from eight, semester classes consisting of a diagnostic pre-test, final semester grades, and the number of successful and unsuccessful students are analyzed. Statistically significant results suggest a chemistry instructor should carefully consider options when selecting a homework system.
Date: May 2009
Creator: Belland, Joshua
System: The UNT Digital Library
Computational and Experimental Studies of the Photoluminescence, Reactivity and Structural Properties of d10 and d8 Metal Complexes (open access)

Computational and Experimental Studies of the Photoluminescence, Reactivity and Structural Properties of d10 and d8 Metal Complexes

Computational chemistry has gained interest as a characterization tool to predict photoluminescence, reactivity and structural properties of organic and transition metal complexes. With the rise of methods including relativity, these studies have been expanded to the accurate modeling of luminescence spectra of complexes with considerable spin-orbit splitting due to heavy metal centers as well as the reaction pathways for these complexes to produce natural products such as hydrogen gas. These advances have led to the synthesis and utility of more effective catalysis as well as the development of more effective organic light emitting diodes (OLEDs) through the incorporation of organometallic complexes as emitters instead of typical organic emitters. In terms of significant scientific advancement presented in this work is in relation to the discovery of significant spin-orbit splitting in a gold(I) alkylphosphine complex, where the splitting results in the states that emit in different colors of the visible region of the electromagnetic spectrum. This work also reveals the discovery both computationally and experimentally, of a genuine polar-covalent bond between two-closed shell metals. This work highlights a complex with an incredibly short gold(I) – copper(I) intermetallic distance leading to a vibrational frequency and dissociation energy that is on par with those …
Date: May 2019
Creator: Otten, Brooke Michelle
System: The UNT Digital Library
Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features (open access)

Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features

Genomic integrity is important for living cells' correct functioning and propagation. Deoxyribonucleic acid as a molecule is a subject to chemical reactions with agents that can come from environment as well as from internal metabolism processes. These reactions can induce damage to DNA and thus compromise the genetic information, and result in disease and death of an organism. To mitigate the damage to DNA, cells have evolved to have multiple DNA repair pathways. Presented here is a computational study of DNA repair genes. The structure of the Homo sapiens direct DNA repair gene ALKBH1 is predicted utilizing homology modeling methods and using AlkB and DBL proteins as templates. Analysis of the obtained structure and molecular dynamics simulations give insights into potentially functionally important residues of the protein. In particular, zinc finger domains are predicted, and lysines that could perform catalytic activities are investigated. Subsequent mutagenesis experiments revealed the effect of the residues predicted to form zinc fingers on activity of ALKBH1. Structure and dynamics of AlkD, a Bascillus cereus base excision DNA repair protein is also studied. This protein has been shown to bind DNA with large alkyl adducts and perform excision catalysis without base flipping which is characteristic to …
Date: May 2018
Creator: Silvestrov, Pavel
System: The UNT Digital Library

Computational Modeling of Cancer-Related Mutations in DNA Repair Enzymes Using Molecular Dynamics and Quantum Mechanics/Molecular Mechanics

This dissertation details the use of computational methods to understand the effect that cancer-related mutations have on proteins that complex with nucleic acids. Firstly, we perform molecular dynamics (MD) simulations of various mutations in DNA polymerase κ (pol κ). Through an experimental collaboration, we classify the mutations as more or less active than the wild type complex, depending upon the incoming nucleotide triphosphate. From these classifications we use quantum mechanics/molecular mechanics (QM/MM) to explore the reaction mechanism. Preliminary analysis points to a novel method for nucleotide addition in pol κ. Secondly, we study the ten-eleven translocation 2 (TET2) enzyme in various contexts. We find that the identities of both the substrate and complementary strands (or lack thereof) are crucial for maintaining the complex structure. Separately, we find that point mutations within the protein can affect structural features throughout the complex, only at distal sites, or only within the active site. The mutation's position within the complex alone is not indicative of its impact. Thirdly, we share a new method that combines direct coupling analysis and MD to predict potential rescue mutations using poly(ADP-ribose) polymerase 1 as a model enzyme. Fourthly, we perform MD simulations of mutations in the protection of …
Date: May 2022
Creator: Leddin, Emmett Michael
System: The UNT Digital Library
Computational Simulations of Cancer and Disease-Related Enzymatic Systems Using Molecular Dynamics and Combined Quantum Methods (open access)

Computational Simulations of Cancer and Disease-Related Enzymatic Systems Using Molecular Dynamics and Combined Quantum Methods

This work discusses applications of computational simulations to enzymatic systems with a particular focus on the effects of various small perturbations on cancer and disease-related systems. First, we cover the development of carbohydrate-based PET imaging ligands for Galectin-3, which is a protein overexpressed in pancreatic cancer tumors. We uncover several structural features for the ligands that can be used to improve their binding and efficacy. Second, we discuss the AlkB family of enzymes. AlkB is the E. coli DNA repair protein for alkylation damage, and has human homologues with slightly different functions and substrates. Each has a conserved active site with a catalytic iron and a coordinating His...His...Asp triad. We have applied molecular dynamics (MD) to investigate the effect of a novel single nucleotide polymorphism for AlkBH7, which is correlated with prostate cancer and has an unknown function. We show that the mutation leads to active site distortion, which has been confirmed by experiments. Thirdly, we investigate the unfolding of hen egg white lysozyme in 90% ethanol solution and low pH, to show the initial steps of unfolding from a native-like state to the disease-associated beta-sheet structure. We compare to mass spectrometry experiments and also show differing pathways based on …
Date: May 2018
Creator: Walker, Alice Rachel
System: The UNT Digital Library
Computational Studies of C–H/C–C Manipulation Utilizing Transition Metal Complexes (open access)

Computational Studies of C–H/C–C Manipulation Utilizing Transition Metal Complexes

Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Using DFT, the transformation to methanol (CH3OH) from methane (CH4) was examined. The transition metal systems studied for this transformation included a model FeII complex. This first-row transition metal is an economical, Earth-abundant metal. The ligand set for this transformation includes a carbonyl ligand in one set of complexes as well as a phosphite ligand in another. The 3d Fe metal shows the ability to convert alkyls/aryls to their oxidized counterpart in an energetically favorable manner. Also, “superbasic” alkali metal amides were investigated to perform C—H bond cleavage. Toluene was the substrate of interest with Cs chosen to be the metal of interest because of the highly electropositive nature of this alkali metal. These highly electrophilic Cs metal systems allow for very favorable C—H bond scission with a toluene substrate. …
Date: May 2015
Creator: Pardue, Daniel B.
System: The UNT Digital Library
Computational Studies of the Photophysical, Structural, and Catalytic Properties of Complex Chemical Systems (open access)

Computational Studies of the Photophysical, Structural, and Catalytic Properties of Complex Chemical Systems

Computational chemistry employs mathematical algorithms, statistics, and large databases to integrate chemical theory with experimental observations. Computational modeling allows us to make predictions concerning molecular properties and reactivity that ultimately lead to accurate assessment of the most important fundamental properties of chemical systems. Advances in theoretical techniques and computer power have dramatically increased the usefulness and importance of computational chemistry as a complement to experimental studies. This is especially relevant to catalytic reactions of industrial importance as well as the analysis of structural properties and the resulting spectroscopic phenomena in what are often otherwise counterintuitive models. This dissertation is a representation of the research I performed during my years as a graduate student in the Chemistry Department at the University of North Texas. My research has examined novel carbenes as efficient organocatalysts, structure-based design and optimization of small molecule drugs, and surveying methods to accurately describe structure and bonding and catalytic abilities of inorganic and organometallic systems. The works presented herein have been published or are awaiting submission to peer-reviewed scientific journals. A variety of computational techniques were employed in studying metal-mediated catalysis and organocatalysis as well as the structural and photophysical properties of systems containing closed-shell transition metal ions.
Date: May 2021
Creator: Melancon, Kortney
System: The UNT Digital Library
Computational Study of Intermolecular Interactions in Complex Chemical Systems (open access)

Computational Study of Intermolecular Interactions in Complex Chemical Systems

This work discusses applications of computational simulations to a wide variety of chemical systems, to investigate intermolecular interactions to develop force field parameters and gain new insights into chemical reactivity and structure stability. First, we cover the characterization of hydrogen-bonding interactions in pyrazine tetracarboxamide complexes employing quantum topological analyses. Second we describe the use of quantum mechanical energy decomposition analysis (EDA) and non-covalent interactions (NCIs) analysis to investigate hydrogen-bonding and intermolecular interactions in a series of representative 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]) ion pairs extracted from classical equilibrium and non-equilibrium molecular dynamics simulations. Thirdly, we describe the use of multipolar/polarizable AMOEBA force field to study the extraction of benzene from a gasoline model employing 1,3-dimethylimidazolium tetrafluorobrorate, [DMIM][BF4], and ethylmethylimidazolium tetrafluorobrorate, [EMIM][BF4]. Fourthly, we cover the recent improvements and new capabilities of the QM/MM code "LICHEM". Finally, we describe the use of polarizable ab initio QM/MM calculations and study the reaction mechanism of N-tert-butyloxycarbonylation of aniline in [EMIm][BF4], and ground state destabilization in uracil DNA glycosylase (UDG).
Date: May 2020
Creator: Vazquez Montelongo, Erik Antonio
System: The UNT Digital Library
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes (open access)

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers …
Date: May 2010
Creator: Pierpont, Aaron
System: The UNT Digital Library
A Computational Study on 18+δ Organometallics (open access)

A Computational Study on 18+δ Organometallics

The B3LYP density functional has been used to calculate properties of organometallic complexes of Co(CO)3 and ReBr(CO)3, with the chelating ligand 2,3-bisphosphinomaleic anhydride, in 19- and 18-electron forms. The SBKJC-21G effective core potential and associated basis set was used for metals (Co/Re) and the 6-31G* basis set was used for all other elements. The differences of bond angles, bond distances, natural atomic charges and IR vibrational frequencies were compared with the available experimental parameters. The differences between the 19- and 18-electron systems have been analyzed. The results reveal that the 19th electron is mostly distributed over the ligand of 2,3-bisphosphinomaleic anhydride, although partially localized onto the metal fragment in 1 and 2*. Two different methods, IR-frequencies and natural atomic charges, were used to determine the value of δ. Present computed values of δ are compared with available experimental values, and predictions are made for unknown complexes.
Date: May 2002
Creator: Yu, Liwen
System: The UNT Digital Library
Conformational Analysis Using Carbon-13-Carbon-13 and Carbon-13-Hydrogen Spin-Spin Coupling Constants (open access)

Conformational Analysis Using Carbon-13-Carbon-13 and Carbon-13-Hydrogen Spin-Spin Coupling Constants

This study consists of four major areas of research. First, the relationship between and was extended to Lrl nil homoallylic couplings and was used to determine the relative degree of puckering in a series of dihydroaromatic carboxylic acids. Second, the effect of coupling contributions transmitted through space were examined by theoretical calculations of the intermediate neglect of differential overlap finite perturbation theory type (INDO-FPT) including selective overlap reduction experiments to determine the sign and magnitude of the major through-space contributions and the effect of the orientation of the substituent upon the vicinal carbon3 carbon coupling. Third, the dependence of the J upon substituent orientation in norbornanes was empirically investigated by the synthesis of a series of lactones and cyclic ethers whose conformation was rigid and known. Fourth, a large number of norbornanes substituted with methyls in the 1, 3, and 7 position and a carbon-13 labeled substituent in the 2 position were synthesized and studied in order to obtain a variety of vicinal C-C couplings; all the NMR parameters for this series of compounds were determined while the carbon13 labeled substituent was varied from methyl to methylene to carbinol to aldehyde and to carboxylic acid.
Date: May 1981
Creator: McDaniel, Cato R., Jr.
System: The UNT Digital Library
The Coupling Mechanism in the Organolithium-Organic Monofluoride Reaction (open access)

The Coupling Mechanism in the Organolithium-Organic Monofluoride Reaction

In this work, the principal concern will be with the coupling reaction and it is anticipated that the other reactions referred to above will be considered further when products of the RX-R'Li reactions are discussed.
Date: May 1964
Creator: Carl, William P.
System: The UNT Digital Library
The Crystal and Molecular Structure of 2, 2' bipyridylglycinatochloro Copper (II) Dihydrate (open access)

The Crystal and Molecular Structure of 2, 2' bipyridylglycinatochloro Copper (II) Dihydrate

The three-dimensional x-ray structure of 2,2'-bipyridylglycinatochloro copper(II) dihydrate has been fully refined to a final R factor of 0.081. The bipyridyl and glycine ligands are arranged about the central copper atom in a square planar configuration while the chlorine atom is 2.635 angstroms above this plane directly over the copper atom. This unusually long distance is explained by the positioning of a glycine group on the opposite side of the square plane, resulting in a distorted octahedral arrangement. Also, the chlorine atom is linked to three oxygen atoms via hydrogen bonding, thus stabilizing the distorted octahedral complex.
Date: May 1975
Creator: Neitzel, Conrad J.
System: The UNT Digital Library
Deposition and Characterization of Thin Metal Oxide Heterostructures for Electronic and Magnetic Device Applications (open access)

Deposition and Characterization of Thin Metal Oxide Heterostructures for Electronic and Magnetic Device Applications

The first study investigated the deposition and characterization of the CoO and Co3O4 phases of cobalt oxide. It was determined that both phases can be easily distinguishable by XPS, LEED and EELS and grown by only altering the oxygen partial pressure during MBE deposition. This fundamental knowledge gives a foundation for further experiments involving graphene growth on cobalt oxides. The second study focused on the layer-by-layer growth of graphene on another metal oxide, MgO. Past research gives promise of favorable interfacial interactions at the graphene/MgO interface though the exact growth mechanism is unknown. Layer by layer growth by MBE resulted in the characterization of a complex graphene oxide/buckled graphene/ graphene heterostructure confirmed by XPS, AES, LEED and EELS and supported by DFT calculations performed by the project's collaborators at the California Institute of Technology. This detailed look into graphene growth give valuable information that can be allied to graphene growth on similar oxide surfaces. The last project deviates from graphene-based studies and instead focused on interfacial interactions between two metal oxides, chrome oxide and titanium oxide. A corundum phase TiO2-x film was grown on Al2O3 via MBE and characterized using XPS, AES, LEED, and EELS. Data taken gives evidence of …
Date: May 2022
Creator: Ladewig, Chad Samuel
System: The UNT Digital Library
The Determination of Organic-Bound Chlorine Levels in Municipal Wastewaters After Treatment with Heavy Chlorine Doses (open access)

The Determination of Organic-Bound Chlorine Levels in Municipal Wastewaters After Treatment with Heavy Chlorine Doses

The development of an analytical method for the determination of total organic-bound chlorine (TOCl) produced during the chlorination of municipal wastewater effluents is presented. Sewage effluent from the Denton, Texas municipal treatment plant was chlorinated at high chlorine doses (1000 - 4000 ppm), as well as typical treatment levels. Chlororganics present in the wastewater, before and after chlorination, were concentrated by adsorption on Amberlite XAD-2 macroreticular resin, followed by elution with diethyl ether. After concentration, the extracts were analyzed for TOC1 by microcoulometry. Analysis of wastewater extracts revealed the production of substantial amounts of new chlorinated organics when effluents were treated with chlorine. The method shows good precision and estimated accuracy is favorable.
Date: May 1976
Creator: Smith, Garmon B.
System: The UNT Digital Library