Degree Discipline

Month

Computational Study of Intermolecular Interactions in Complex Chemical Systems (open access)

Computational Study of Intermolecular Interactions in Complex Chemical Systems

This work discusses applications of computational simulations to a wide variety of chemical systems, to investigate intermolecular interactions to develop force field parameters and gain new insights into chemical reactivity and structure stability. First, we cover the characterization of hydrogen-bonding interactions in pyrazine tetracarboxamide complexes employing quantum topological analyses. Second we describe the use of quantum mechanical energy decomposition analysis (EDA) and non-covalent interactions (NCIs) analysis to investigate hydrogen-bonding and intermolecular interactions in a series of representative 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]) ion pairs extracted from classical equilibrium and non-equilibrium molecular dynamics simulations. Thirdly, we describe the use of multipolar/polarizable AMOEBA force field to study the extraction of benzene from a gasoline model employing 1,3-dimethylimidazolium tetrafluorobrorate, [DMIM][BF4], and ethylmethylimidazolium tetrafluorobrorate, [EMIM][BF4]. Fourthly, we cover the recent improvements and new capabilities of the QM/MM code "LICHEM". Finally, we describe the use of polarizable ab initio QM/MM calculations and study the reaction mechanism of N-tert-butyloxycarbonylation of aniline in [EMIm][BF4], and ground state destabilization in uracil DNA glycosylase (UDG).
Date: May 2020
Creator: Vazquez Montelongo, Erik Antonio
System: The UNT Digital Library
Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces (open access)

Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces

The direct epitaxial growth of multilayer BN by atomic layer deposition is of critical significance forfo two-dimensional device applications. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) demonstrate layer-by-layer BN epitaxy on two different substrates. One substrate was a monolayer of RuO2(110) formed on a Ru(0001) substrate, the other was an atomically clean Ni(111) single crystal. Growth was accomplished atomic layer deposition (ALD) cycles of BCl3/NH3 at 600 K substrate temperature and subsequent annealing in ultrahigh vacuum (UHV). This yielded stoichiometric BN layers, and an average BN film thickness linearly proportional to the number of BCl3/NH3 cycles. The BN(0001)/RuO2(110) interface had negligible charge transfer or band bending as indicated by XPS and LEED data indicate a 30° rotation between the coincident BN and oxide lattices. The atomic layer epitaxy of BN on an oxide surface suggests new routes to the direct growth and integration of graphene and BN with industrially important substrates, including Si(100). XPS and LEED indicated epitaxial deposition of h-BN(0001) on the Ni(111) single crystal by ALD, and subsequent epitaxially aligned graphene was deposited by chemical vapor deposition (CVD) of ethylene at 1000 K. Direct multilayer, in situ growth of h-BN on magnetic substrates such as …
Date: May 2020
Creator: Jones, Jessica C.
System: The UNT Digital Library
Donor-Acceptor Systems: Photochemistry and Energy Harvesting Applications (open access)

Donor-Acceptor Systems: Photochemistry and Energy Harvesting Applications

Donor-acceptor systems have unique properties that make them ideal candidates for solar energy harvesting through mimicry of natural photosynthesis. This dissertation is focused on unraveling those unique properties in various types of donor-acceptor systems. The systems investigated are categorized as closely linked, push-pull, supramolecular, and multi-unit. As part of the study, photosynthetic analogues based on BF2-chelated dipyrromethene (BODIPY), porphyrin, phthalocyanine, truxene, ferrocene, quinone, phenothiazine (PTZ), perylenediimide (PDI), fullerene (C60), dicyanoquinodimethane (DCNQ), tetracyanobutadiene (TCBD), and triphenylamine (TPA) are investigated. The effects of proximity between donor-acceptor entities, their geometrical orientation relative to each other, push-pull character of substituents, and competitive energy and electron transfer are examined. In all systems, primary events of photosynthesis are observed, that is absorption and energy transfer and/or electron transfer is witnessed. Ultrafast transient absorption spectroscopy is utilized to characterize the photo-induced events, while other methods such as steady-state luminescence, cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and computational calculations are used to aid in the characterization of the donor-acceptor systems, in particular their applicability as solar energy harvesters.
Date: May 2020
Creator: Thomas, Michael Brandon
System: The UNT Digital Library

Photophysical Properties of Binuclear and Trinuclear Monovalent Coinage Metal Complexes for Applications in Molecular Devices

Monovalent coinage metal complexes have been of significant interest due to their rich photophysical properties. This dissertation focuses on the design, synthesis, and characterization of gold, silver, and copper phosphors. Chapter 2 investigates new physical and photophysical properties of a gold diphosphine dimer in the solid state. Thermally activated luminescence switching between two structural states is discussed. Chapter 3 includes the photochemistry of closed shell group 11 transition metals with dithiophosphonate and diphosphine ligands as heteroleptic, homoleptic and heterometallic systems. Chapter 4 reports the synthesis and characterization of a cyclic trinuclear gold imidazolate complex with high electron dentistry and π- base properties. The trinuclear gold (I) complexes reactivity with silver(I) and sodium cations is explored. The photochemistry of all complexes are screened for efficiency, emission profiles and lifetimes as potential materials to be used in OLEDs and other molecular devices.
Date: May 2020
Creator: Harris, Lauren Michelle
System: The UNT Digital Library
Study the pKa of C–H Bonds and Proton-Coupled Electron Transfer Process by Transition Metal Complexes via Computational Methods (open access)

Study the pKa of C–H Bonds and Proton-Coupled Electron Transfer Process by Transition Metal Complexes via Computational Methods

Computational techniques, mostly density functional theory (DFT), were applied to study metal-based catalytic processes for energy conversion reactions. In the first and second projects, the main focus was on activation of the light alkanes such as methane, which have thermodynamically strong and kinetically inert C–H bonds plus very low acidity/basicity. Two Mo-oxo complexes with the different redox non-innocent supporting ligands, diamide-diimine and ethylene-dithiolate, were modeled. These Mo-oxo complexes are modeled inspired by active species of a metalloenzyme, ethylbenzene dehydrogenase (EBDH). The results for the activation of the benzylic C–H bond of a series of substituted toluenes by modeled Mo-oxo complexes show there is a substantial protic character in the transition state which was further supported by the preference for [2+2] addition over HAA for most complexes. Hence, it was hypothesized that C–H activation by these EBDH mimics is controlled more by the pKa than by the bond dissociation free energy of the C–H bond being activated. The results suggest, therefore, promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active site mimics. Also, it is found that the impact of supporting ligand and Brønsted/Lowry acid/base conjugate is significant on the free energy barrier of …
Date: May 2020
Creator: Nazemi, Azadeh
System: The UNT Digital Library
Activation of Small Molecules by Transition Metal Complexes via Computational Methods (open access)

Activation of Small Molecules by Transition Metal Complexes via Computational Methods

The first study project is based on modeling Earth abundant 3d transition-metal methoxide complexes with potentially redox-noninnocent ligands for methane C–H bond activation to form methanol (LnM-OMe + CH4 → LnM–Me + CH3OH). Three types of complex consisting of tridentate pincer terpyridine-like ligands, and different first-row transition metals (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) were modeled to elucidate the reaction mechanism as well as the effect of the metal identity on the thermodynamics and kinetics of a methane activation reaction. The calculations showed that the d electron count of the metal is a more significant factor than the metal's formal charge in controlling the thermodynamics and kinetics of C–H activation. These researches suggest that late 3d-metal methoxide complexes that favor σ-bond metathesis pathways for methane activation will yield lower barriers for C–H activation, and are more profitable catalyst for future studies. Second, subsequently, on the basis of the first project, density functional theory is used to analyze methane C−H activation by neutral and cationic nickel-methoxide complexes. This study identifies strategies to further lower the barriers for methane C−H activation through evaluation of supporting ligand modifications, solvent polarity, overall charge of complex, metal identity and counterion …
Date: May 2020
Creator: Najafian, Ahmad
System: The UNT Digital Library

Synthesis and Studies of Wide-Band Capturing BODIPY-Fullerene Based Donor-Acceptor Systems

Artificial photosynthesis is the process, which mimics the natural photosynthesis process in order to convert solar energy to chemical energy. This process can be separated into four parts, which are antenna system, reaction center, water oxidation center, and proton reduction center. If we only focus on the ‘antenna system and reaction center' modules, expanding the absorption band in antenna system and generating long-lived charge separated state in reaction center are two fantastic strategies to design the molecules in order to improve the efficiency of the artificial photosynthesis process. In the first work of this dissertation, mono-18-crown-6 and mono-ammonium binding strategy was used to connect BODIPY- C60 supramolecular based donor–acceptor conjugates. The meso- position of BODIPY was modified by benzo-18-crown-6, and the 3, 5 methyl positions were replaced by two styryl groups, which covered additional donor (triphenylamine or 10-methylphenothiazine). The acceptor is a fulleropyrrolidine derivative, which included an ethyl ammonium cation. The absorbance wavelengths of the donor covered 300-850 nm, which is the visible/near IR region (wide band capturing). The ultrafast charge separation and relatively slow charge recombination was found from femtosecond transient absorption study. Next, a ‘two point' bis-18-crown-6 and bis-ammonium binding strategy was utilized to link BODIPY- C60 supramolecular …
Date: May 2020
Creator: Shao, Shuai
System: The UNT Digital Library