Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium (open access)

Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium

Initial velocity studies of O-acetylserine sulfhydrylase-B (OASS-B) from Salmonella typhimurium using both natural and alternative substrates suggest a Bi Bi ping pong kinetic mechanism with double substrate competitive inhibition. The ping pong mechanism is corroborated by a qualitative and quantitative analysis of product and dead-end inhibition. Product inhibition by acetate is S-parabolic noncompetitive, indication of a combination of acetate with E followed by OAS. These data suggest some randomness to the OASS-B kinetic mechanism. The pH dependence of kinetic parameters was determined in order to obtain information on the acid-base chemical mechanism for the OASS-B reaction. A mechanism is proposed in which an enzyme general base accepts a proton from α-amine of O-acetylserine, while a second enzyme general base acts by polarizing the acetyl carbonyl assisting in the β-elimination of the acetyl group of O-acetylserine. The ε-amine of the active site lysine acts as a general base to abstract the α-proton in the β-elimination of acetate. At the end of the first half reaction the ε-amine of the active site lysine that formed the internal Schiff base and the general base are protonated. The resulting α-aminoacrylate intermediate undergoes a Michael addition with HS‾ and the active site lysine donates its …
Date: August 1993
Creator: Tai, Chia-Hui
System: The UNT Digital Library
A Study of the Intrinsic Fluorescence of O-Acetyl-L-Serine Sulfhydrylase-A from Salmonella typhimurium (open access)

A Study of the Intrinsic Fluorescence of O-Acetyl-L-Serine Sulfhydrylase-A from Salmonella typhimurium

O-Acetyl-L-serine sulfhydrylase-A (OASS-A) forms acetate and L-cysteine from O-acetyl-L-serine (OAS) and sulfide. One molecule of the cofactor pyridoxal 5'- phosphate (PLP) is bound in each holoenzyme protomer.
Date: May 1993
Creator: McClure, G. David (George David)
System: The UNT Digital Library
Desensitized Phosphofructokinase from Ascaris suum: A Study in Noncooperative Allostery (open access)

Desensitized Phosphofructokinase from Ascaris suum: A Study in Noncooperative Allostery

The studies described in this dissertation examine the effects of F-2,6-P2 and AMP or phosphorylation on the kinetic mechanism of d-PFK. The effect of varied pH on the activation by F-2,6-P2 is also described.
Date: May 1993
Creator: Payne, Marvin A.
System: The UNT Digital Library
Studies of Enzyme Mechanism Using Isotopic Probes (open access)

Studies of Enzyme Mechanism Using Isotopic Probes

The isotope partitioning studies of the Ascaris suum NAD-malic enzyme reaction were examined with five transitory complexes including E:NAD, E:NAD:Mg, E:malate, E:Mg:malate, and E:NAD:malate. Three productive complexes, E:NAD, E:NAD:Mg, and E:Mg:malate, were obtained, suggesting a steady-state random mechanism. Data for trapping with E:14C-NAD indicate a rapid equilibrium addition of Mg2+ prior to the addition of malate. Trapping with 14C-malate could only be obtained from the E:Mg2+:14C-malate complex, while no trapping from E:14C-malate was obtained under feasible experimental conditions. Most likely, E:malate is non-productive, as has been suggested from the kinetic analysis. The experiment with E:NAD:malate could not be carried out due to the turnover of trace amounts of malate dehydrogenase in the pulse solution. The equations for the isotope partitioning studies varying two substrates in the chase solution in an ordered terreactant reaction were derived, allowing a determination of the relative rates of substrate dissociation to the catalytic reaction for each of the productive transitory complexes. NAD and malate are released from the central complex at an identical rate, equal to the catalytic rate.
Date: August 1987
Creator: Chen, Cheau-Yun
System: The UNT Digital Library
Studies on Hog Plasma Lecithin:cholesterol Acyltransferase: Isolation and Characterization of the Enzyme (open access)

Studies on Hog Plasma Lecithin:cholesterol Acyltransferase: Isolation and Characterization of the Enzyme

Lecithin:cholesterol acyltransferase (LCAT) was isolated from hog plasma and basic physicochemical properties and functionally important regions were investigated. Approximately one milligram of the enzyme was purified to apparent homogeneity with approximately a 20,000-fold increase in specific activity. In the plasma, hog LCAT was found to associate with high-density lipoproteins (HDL) probably through hydrophobic interactions with apolipoprotein A-I. HDL was the preferred lipoprotein substrate of the enzyme as its macromolecular substrate. The enzyme was found to contain 4 free sulfhydryl groups; at least one of these appeared to be essential for catalytic activity. The enzyme had a tendency to aggregate at high concentrations. More than half of the tryptophan and none of the tyrosine residues of the enzyme were shown to be exposed to the aqueous environment based on fluorescence and absorbance studies, respectively.
Date: May 1987
Creator: Park, Yong Bok
System: The UNT Digital Library
Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase (open access)

Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase

An 18.5-kb human DNA segment was selected from a human XCharon-4A library by hybridization to mammalian valine tRNAiAc and found to encompass a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNAcuu gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region of the human DNA insert. At least nine Alu family members were found interspersed throughout the human DNA fragment. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase Ti fingerprints of the mature-sized tRNA transcription products are consistent with the DNA sequences of the structural genes. Three members of the chimpanzee triosephosphate isomerase (TPI) gene family, the functional transcription unit and two processed pseudogenes, were characterized by genomic blotting and DNA sequence analysis. The bona fide TPI gene spans 3.5 kb with seven exons and six introns, and is the first complete hominoid TPI gene sequenced. The gene exhibits a very high identity with the human and rhesus TPI genes. In particular, the polypeptides of 248 amino acids encoded by the chimpanzee and human …
Date: August 1990
Creator: Craig, Leonard C. (Leonard Callaway)
System: The UNT Digital Library
Posttranslational Modification of Proteins by ADP-ribosylation (open access)

Posttranslational Modification of Proteins by ADP-ribosylation

This work presents the development of a highly sensitive and selective chemical assay for mono(ADP-ribose) residues covalently bound to proteins in vivo. An extensive review of the literature is presented in the introduction of this work. The physiological.functions of mono(ADP-ribosyl)transferase activities associated with certain bacterial toxins (e.g., diphtheria, cholera and pertussis toxins) are well established. However, the roles of endogenous vertebrate transferases are unknown. The elucidation of the roles of these cellular transferases will likely require identification of the physiologically relevant target proteins. Toward this end, it will also be important to identify the types of (ADP-ribose)-protein linkages present in vivo. ADP-ribosylation reactions catalyzed by the different bacterial and vertebrate transferases are specific for different amino acid acceptors in vitro. However, the vertebrate transferases that have been characterized thus far are NAD:arginine mono(ADP-ribosyl)transferases. The work presented here describes the development of a chemical assay for the detection of in vivo modified, ADP-ribosylated proteins containing N-glycosylic linkages to arginine. The assay was applied to the analysis of ADP-ribose residues in adult rat liver. The strategy employed for detection of protein-bound ADP-ribose residues eliminated potential artifacts arising from trapped nucleotides (or their degradation products), since the acid-insoluble material was completely dissolved in …
Date: December 1984
Creator: Payne, David M. (David Michael)
System: The UNT Digital Library
Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase (open access)

Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase

Isotope partitioning experiments were carried out with the adenosine 3',5'-monophosphate-dependent protein kinase catalytic subunit (cAPK) from bovine hearts to obtain information on the order of addition of reactants and the relative rates of reactant release from enzyme compared to the catalytic step(s). A value of 100% trapping for both ErMgATP-[γ-32P] and E:3H-Serpeptide at low Mgf indicates that MgATP and Serpeptide dissociate slowly from the enzyme compared to the catalytic step(s). The K_Serpeptide for MgATP trapping is 17 μM, while the K_MgATP for Serpeptide trapping is 0.58 mM. The latter data indicate that the off-rate for MgATP from the E:MgATP complex is 14 s^-1 while that for Serpeptide from the E: Serpeptide complex is 64 s^-1. At high Mg^, 100% trapping is obtained for the E:MgATP-[γ-32P] complex but only 40% is obtained for the E:Serpeptide complex. Thus, the off-rate for Serpeptide from the E:MgATP:Serpeptide complex becomes significant at high Mg_f. Data suggest a random mechanism in which MgATP is sticky. The V for the cAPK reaction increases 1.5-1.7 fold in the presence of the R_II in the presence of saturating cAMP at a stoichiometry of R:C of 1:1. No change is obtained with the type-I complex under these conditions. At higher …
Date: May 1988
Creator: Kong, Cheng-Te
System: The UNT Digital Library
Analysis of Human Transfer RNA Gene Heteroclusters (open access)

Analysis of Human Transfer RNA Gene Heteroclusters

Two phage lambda clones encompassing human tRNA genes have been isolated from a human gene library harbored in bacteriophage lambda Charon-UA. One of the clones (designated as hLeuU) containing a 20-kb human DNA fragment was isolated and found to contain a cluster of four tRNA genes. An 8.2-kb Hindlll fragment encompassing the four tRNA genes was isolated from the 20-kb fragment and subcloned into pBR322 for restriction mapping and DNA sequence analysis. The four tRNA genes are arranged as two tandem pairs with the first pair containing a proline tRNAAGQ gene and a leucine tRNAAAQ gene and the second pair containing another proline tRNAAGG gene and a threonine tRNAuQU gene. The two pairs are separated about 3 kb from each other, and the leucine tRNAAAG gene is of opposite polarity from the other three tRNA genes. The tRNA transcription units were sequenced by a unidirectional deletion dideoxyribonucleotide chain-termination method in the M13mpl8 and 19 vectors. The coding regions of the four tRNA genes contain characteristic internal split promoter sequences and do not encode intervening sequences nor the CCA trinucleotide found in mature tRNAs. The proline t R N A A G G gene is separated from the leucine t R …
Date: December 1986
Creator: Chang, Yung-Nien
System: The UNT Digital Library
Studies on ADP-Ribose Polymer Metabolism in Cultured Mammalian Cells Following DNA Damage (open access)

Studies on ADP-Ribose Polymer Metabolism in Cultured Mammalian Cells Following DNA Damage

ADP-ribose polymer metabolism has been studied in human cells derived from a patient with Glutamyl Ribose Phosphate Storage Disease (GRPSD) and in mouse C3H1OT1/2 cells following oxidative stress induced by hydrogen peroxide (H202 ). It has been postulated that GRPSD resulted from an abnormality in ADP-ribose polymer metabolism. This study has shown that these cells exhibit reduced poly(ADP ribose) polymerase activity which is proposed to result from modification of the enzyme with ribose phosphate groups. The modification in the polymerase is proposed to be secondary to a defect in either ADP-ribosyl proteinlyase or an overproduction of a cellular phosphodiesterase. The metabolism of ADP-ribose polymers was rapidly altered by H202 and there were independent effects on adenine nucleotide pools. The results suggest that ADP-ribose polymer metabolism is involved in cellular defenses to oxidative stress.
Date: May 1991
Creator: Maharaj, Geeta
System: The UNT Digital Library
Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells (open access)

Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells

This study demonstrates the presence of protein kinase C activity in both cytosolic and membrane fractions of bovine lens epithelial cells in culture. Protein kinase C activity is similar in normal and hyperglycemic cells. Furthermore, the ability of the enzyme to translocate from the cytosol to the membrane following phorbol ester treatment is unimpeded by hyperglycemic conditions. Moreover, protein kinase C activation had no effect on myoinositol uptake either in normal cells or in cells exposed to hyperglycemic conditions.
Date: December 1993
Creator: Fan, Wen-Lin
System: The UNT Digital Library
Physical Mapping of Human Transfer RNA Gene Clusters (open access)

Physical Mapping of Human Transfer RNA Gene Clusters

Two plaque-pure phage lambda clones designated as λhtX-l and λhtX-2 that hybridized to unfractionated bovine liver tRNA were isolated from a human X chromosome-specific library. The λDNAs were characterized by restriction mapping and Southern blot hybridization techniques. The human DNA segment in λhtX-l contains five or more presumptive tRNA genes and at least one Alu family member. The 19-kilobase human DNA insert in λhtX-2 contains two or more presumptive tRNA genes and at least three Alu family members. Another human genomic clone designated λhVKV7 hybridized to mammalian valine tRNA IAC. The clone was characterized by physical mapping and Southern blot hybridization techniques. The 18.5-kilobase human DNA fragment in λhVKV7 contains a cluster of three tRNA genes and at least nine Alu family members.
Date: December 1989
Creator: Wang, Luping
System: The UNT Digital Library
Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster (open access)

Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster

Two different cloned human DNA segments encompassing transfer RNA gene and pseudogene clusters have been isolated from a human gene library harbored in bacteriophage lambda Charon 4-A. One clone (designated as λhVal7) encompassing a 20.5-kilobase (Kb) human DNA insert was found to contain a valine transfer RNA_AAC gene and several Alu-like elements by Southern blot hybridization analysis and DNA sequencing with the dideoxyribonucleotide chain-termination method in the bacteriophage M13mp19 vector. Another lambda clone (designated as λhLeu8) encompassing a 14.3-Kb segment of human DNA was found to contain a methionine elongator transfer RNA_CAT pseudogene and other as yet unidentified transfer RNA pseudogenes.
Date: December 1987
Creator: Lee, Mike Ming-Jen
System: The UNT Digital Library
Preparation and Characterization of Model Conjugates for the Study of Proteins Modified by ADP-ribose (open access)

Preparation and Characterization of Model Conjugates for the Study of Proteins Modified by ADP-ribose

Modification of proteins by ADP-ribose has been shown to be a versatile modification with respect to the amino acid side chain. The results described here will allow the study of the biological importance of ADP-ribose glycation and also allow differentiation on crude extracts between enzymatic modifications from protein ADP-ribose glycation that can occur due to the presence of NAD glycohydrolases.
Date: August 1992
Creator: Cervantes-Laurean, Daniel
System: The UNT Digital Library
Kinetic and Chemical Mechanism of 6-phosphogluconate Dehydrogenase from Candida Utilis (open access)

Kinetic and Chemical Mechanism of 6-phosphogluconate Dehydrogenase from Candida Utilis

A complete initial velocity study of the 6-phosphogluconate dehydrogenase from Candida utilis in both reaction directions suggests a rapid equilibrium random kinetic mechanism with dead-end E:NADP:(ribulose 5-phosphate) and E:NADPH:(6- phosphogluconate) complexes. Initial velocity studies obtained as a function of pH and using NAD as the dinucleotide substrate for the reaction suggest that the 2'-phosphate is critical for productive binding of the dinucleotide substrate. Primary deuterium isotope effects using 3-<i-6-phosphogluconate were obtained for the 6-phosphogluconate dehydrogenase reaction using NADP and various alternative inucleotide substrates.
Date: May 1993
Creator: Berdis, Anthony J. (Anthony Joseph)
System: The UNT Digital Library
O-Acetylserine Sulhydralase-A from Salmonella typhimurium LT-2: Thermodynamic Properties and SPectral Identification of Intermediates (open access)

O-Acetylserine Sulhydralase-A from Salmonella typhimurium LT-2: Thermodynamic Properties and SPectral Identification of Intermediates

O-Acetylserine Sulfhydrylase (OASS) is a pyridoxal phosphate enzyme that catalyzes the reaction of O-acetyl-Lserine with sulfide to give L-cysteine. OASS is present as two isoforms, designated -A and -B. The kinetic mechanism of OASS-A is well known and there is also much known concerning the acid-base chemistry of the enzyme. However, little is known concerning the location of the rate determining steps, the sequencing of chemical steps that occur at the active site, or the nature of the rate determining transition states. The studies performed to help elucidate these aspects of the OASS-A mechanism included determination of the thermodynamics of both half reactions, along with studies utilizing substrate analogs of OAS halting the reaction at specific points along the reaction pathway allowing the identification of reaction intermediates. The free energy change of the first half reaction was shown to be -5.7 Kcal/mole while the second half reaction was shown to be, for all intents and purposes, irreversible. Intermediates along the reaction pathway that have been previously identified include the internal Schiff base and the a-aminoacrylate. The external Schiff base was identified using the analogs cysteine, alanine, and glycine while the geminal diamine was identified using the analog serine. Formation of …
Date: August 1993
Creator: Simmons, James Walter
System: The UNT Digital Library
Application of Synthetic Peptides as Substrates for Reversible Phosphorylation (open access)

Application of Synthetic Peptides as Substrates for Reversible Phosphorylation

Two highly homologous synthetic peptides MLC(3-13) (K-R-A-K-A-K-T-TK-K-R-G) and MLC(5-13) (A-K-A-K-T-T-K-K-R-G) corresponding to the amino terminal amino acid sequence of smooth muscle myosin light chain were utilized as substrates for protein kinase C purified from murine lymphosarcoma tumors to determine the role of the primary amino acid sequence of protein kinase C substrates in defining the lipid (phosphatidyl serine and diacylglycerol) requirements for the activation of the enzyme. Removal of the basic residues lysine and arginine from the amino terminus of MLC(3-13) did not have a significant effect on the Ka value of diacylglycerol. The binding of effector to calcium-protein kinase C appears to be random since binding of one effector did not block the binding of the other.
Date: August 1992
Creator: Abukhalaf, Imad Kazem
System: The UNT Digital Library
Isolation and Partial Characterization of Lecithin Cholesterol Acyltransferase and High Density Lipoprotein from Hog Plasma (open access)

Isolation and Partial Characterization of Lecithin Cholesterol Acyltransferase and High Density Lipoprotein from Hog Plasma

Lecithin:cholesterol acyltransferase (LCAT) was purified 30,000-fold from hog plasma in a homogeneous state as indicated by polyacrylamide gel electrophoresis. The purified enzyme had an apparent molecular weight of 66,000 and was found to contain about 21.4 percent (w/w) carbohydrate. The properties of hog LCAT including amino acid composition were compared with human LCAT. High density lipoprotein (HDL) was isolated from the hog plasma by an immunoaffinity column chromatography. The isolated HDL showed nearly identical lipid-protein composition although it contained additional protein components when it was compared to HDL isolated by a traditional method involving ultracentrifugation.
Date: May 1984
Creator: Park, Yong Bok
System: The UNT Digital Library
pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic Enzyme (open access)

pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic Enzyme

Ascaris suum NAD-malic enzyme catalyzes the decarboxylation of oxalacetate and reduction of pyruvate. Thus, the present classification (E.C. 1.1.1.39) for this enzyme should be changed to E.C. 1.1.1.38. In the absence of nucleotide, both the chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzymes catalyze the decarboxylation of oxalacetate. A study of the pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction was carried out for the NAD(P)-malic enzyme with Mg^2+ and Mn^2+ in the presence and absence of nucleotide. In all cases, an enzyme residue is required in its protonated form for reaction while for oxalacetate decarboxylation the β-carboxyl of oxalacetate is required unprotonated. Of a number of inhibitory binding analogs of malate tested, oxalate is the tightest binding inhibitor for Ascaris suum enzyme.
Date: August 1985
Creator: Park, Sang-Hoon
System: The UNT Digital Library
Characterization of Human Glucose-6-Phosphate Isomerase of Different Sizes (open access)

Characterization of Human Glucose-6-Phosphate Isomerase of Different Sizes

Glucose phosphate isomerase (GPI) was purified from human placenta utilizing cross-linked spherical particle phosphocellulose. In three steps, GPI could be purified approximately 5500 fold with greater than 50% recovery. The purified enzyme exhibited four bands upon non-denaturing PAGE and isoelectric focusing (IEF) when stained with GPI specific activity stain. The four isozymes were isolated by preparative IEF. The isoelectric points of the isozymes were determined. Sodium dodecyl sulfate (SDS) gel electrophoresis showed two types of subunits with different molecular weights. Structural analyses showed both types of subunits had blocked amino termini. Other properties of the isozymes and subunits, including immunological reactivity, pH stability, peptide mapping and amino acid composition, were also established.
Date: December 1989
Creator: Sun, An Qiang
System: The UNT Digital Library
Metabolism of Diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in Cultured Mammalian Cells (open access)

Metabolism of Diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in Cultured Mammalian Cells

Methodology was developed which allowed the rapid and routine quantitation of subpicomole quantities of diadenosine-5ʹ,5ʹʹʹ-P¹,P⁴-tetraphosphate (Ap₄A) in cultured mammalian cells. This methodology includes the rapid extraction of cellular nucleotides in cold alkali, resolution of Ap₄A from the bulk of cellular materials on a highly specific boronate affinity resin, and quantitation of the dinucleotide in a coupled bioluminescence assay utilizing venom phosphodiesterase and firefly luciferase. The sensitivity and selectivity of this assay is demonstrated and contrasted with previously developed techniques. This assay was used to examine the role of Ap₄A in DNA replication and the cellular stress response.
Date: December 1984
Creator: Baker, Jeffrey C. (Jeffrey Clayton)
System: The UNT Digital Library