An Extensible Computing Architecture Design for Connected Autonomous Vehicle System (open access)

An Extensible Computing Architecture Design for Connected Autonomous Vehicle System

Autonomous vehicles have made milestone strides within the past decade. Advances up the autonomy ladder have come lock-step with the advances in machine learning, namely deep-learning algorithms and huge, open training sets. And while advances in CPUs have slowed, GPUs have edged into the previous decade's TOP 500 supercomputer territory. This new class of GPUs include novel deep-learning hardware that has essentially side-stepped Moore's law, outpacing the doubling observation by a factor of ten. While GPUs have make record progress, networks do not follow Moore's law and are restricted by several bottlenecks, from protocol-based latency lower bounds to the very laws of physics. In a way, the bottlenecks that plague modern networks gave rise to Edge computing, a key component of the Connected Autonomous Vehicle system, as the need for low-latency in some domains eclipsed the need for massive processing farms. The Connected Autonomous Vehicle ecosystem is one of the most complicated environments in all of computing. Not only is the hardware scaled all the way from 16 and 32-bit microcontrollers, to multi-CPU Edge nodes, and multi-GPU Cloud servers, but the networking also encompasses the gamut of modern communication transports. I propose a framework for negotiating, encapsulating and transferring data …
Date: May 2021
Creator: Hochstetler, Jacob Daniel
System: The UNT Digital Library
Hybrid Optimization Models for Depot Location-Allocation and Real-Time Routing of Emergency Deliveries (open access)

Hybrid Optimization Models for Depot Location-Allocation and Real-Time Routing of Emergency Deliveries

Prompt and efficient intervention is vital in reducing casualty figures during epidemic outbreaks, disasters, sudden civil strife or terrorism attacks. This can only be achieved if there is a fit-for-purpose and location-specific emergency response plan in place, incorporating geographical, time and vehicular capacity constraints. In this research, a comprehensive emergency response model for situations of uncertainties (in locations' demand and available resources), typically obtainable in low-resource countries, is designed. It involves the development of algorithms for optimizing pre-and post-disaster activities. The studies result in the development of four models: (1) an adaptation of a machine learning clustering algorithm, for pre-positioning depots and emergency operation centers, which optimizes the placement of these depots, such that the largest geographical location is covered, and the maximum number of individuals reached, with minimal facility cost; (2) an optimization algorithm for routing relief distribution, using heterogenous fleets of vehicle, with considerations for uncertainties in humanitarian supplies; (3) a genetic algorithm-based route improvement model; and (4) a model for integrating possible new locations into the routing network, in real-time, using emergency severity ranking, with a high priority on the most-vulnerable population. The clustering approach to solving dept location-allocation problem produces a better time complexity, and the …
Date: May 2021
Creator: Akwafuo, Sampson E
System: The UNT Digital Library

Understanding and Reasoning with Negation

In this dissertation, I start with an analysis of negation in eleven benchmark corpora covering six Natural Language Understanding (NLU) tasks. With a thorough investigation, I first show that (a) these benchmarks contain fewer negations compared to general-purpose English and (b) the few negations they contain are often unimportant. Further, my empirical studies demonstrate that state-of-the-art transformers trained using these corpora obtain substantially worse results with the instances that contain negation, especially if the negations are important. Second, I investigate whether translating negation is also an issue for modern machine translation (MT) systems. My studies find that indeed the presence of negation can significantly impact translation quality, in some cases resulting in reductions of over 60%. In light of these findings, I investigate strategies to better understand the semantics of negation. I start with identifying the focus of negation. I develop a neural model that takes into account the scope of negation, context from neighboring sentences, or both. My best proposed system obtains an accuracy improvement of 7.4% over prior work. Further, I analyze the main error categories of the systems through a detailed error analysis. Next, I explore more practical ways to understand the semantics of negation. I consider …
Date: December 2022
Creator: Hossain, Md Mosharaf
System: The UNT Digital Library

Secure and Decentralized Data Cooperatives via Reputation Systems and Blockchain

This dissertation focuses on a novel area of secure data management referred to as data cooperatives. A data cooperative solution promises its users better protection and control of their personal data as compared to the traditional way of their handling by the data collectors (such as governments, big data companies, and others). However, despite the many interesting benefits that the data cooperative approach tends to provide its users, it suffers from a few challenges hindering its development, adoption, and widespread use among data providers and consumers. To address these issues, we have divided this dissertation into two parts. In the first part, we identify the existing challenges and propose and implement a decentralized architecture built atop a blockchain system. Our solution leverages the inherent decentralized, tamper-resistant, and security properties of the blockchain. The implementation of our system was carried out on an existing blockchain test network, Ropsten, and our results show that blockchain is an efficient and scalable platform for the development of a decentralized data cooperative solution. In the second part of this work, we further addressed the existing challenges and the limitations of the implementation from the first part of our work. In particular, we addressed inclusivity---a core …
Date: December 2022
Creator: Salau, Abiola
System: The UNT Digital Library

Registration of Point Sets with Large and Uneven Non-Rigid Deformation

Non-rigid point set registration of significantly uneven deformations is a challenging problem for many applications such as pose estimation, three-dimensional object reconstruction, human movement tracking. In this dissertation, we present a novel probabilistic non-rigid registration method to align point sets with significantly uneven deformations by enforcing constraints from corresponding key points and preserving local neighborhood structures. The registration method is treated as a density estimation problem. Incorporating correspondence among key points regulates the optimization process for large, uneven deformations. In addition, by leveraging neighborhood embedding using Stochastic Neighbor Embedding (SNE) as well as an alternative means based on Locally Linear Embedding (LLE), our method penalizes the incoherent transformation and hence preserves the local structure of point sets. Also, our method detects key points in the point sets based on geodesic distance. Correspondences are established using a new cluster-based, region-aware feature descriptor. This feature descriptor encodes the association of a cluster to the left-right (symmetry) or upper-lower regions of the point sets. We conducted comparison studies using public point sets and our Human point sets. Our experimental results demonstrate that our proposed method successfully reduced the registration error by at least 42.2% in contrast to the state-of-the-art method. Especially, our method …
Date: December 2022
Creator: Maharjan, Amar Man
System: The UNT Digital Library
Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms (open access)

Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms

In this research, three aspects of data quality with regard to artifical intelligence (AI) have been investigated: detection of misleading fake data, especially deepfakes, data scarcity, and data insufficiency, especially how much training data is required for an AI application. Different application domains where the selected aspects pose issues have been chosen. To address the issues of data privacy, security, and regulation, these solutions are targeted for edge devices. In Chapter 3, two solutions have been proposed that aim to preempt such misleading deepfake videos and images on social media. These solutions are deployable at edge devices. In Chapter 4, a deepfake resilient digital ID system has been described. Another data quality aspect, data scarcity, has been addressed in Chapter 5. One of such agricultural problems is estimating crop damage due to natural disasters. Data insufficiency is another aspect of data quality. The amount of data required to achieve acceptable accuracy in a machine learning (ML) model has been studied in Chapter 6. As the data scarcity problem is studied in the agriculture domain, a similar scenario—plant disease detection and damage estimation—has been chosen for this verification. This research aims to provide ML or deep learning (DL)-based methods to solve …
Date: December 2022
Creator: Mitra, Alakananda
System: The UNT Digital Library
Reliability and Throughput Improvement in Vehicular Communication by Using 5G Technologies (open access)

Reliability and Throughput Improvement in Vehicular Communication by Using 5G Technologies

The vehicular community is moving towards a whole new paradigm with the advancement of new technology. Vehicular communication not only supports safety services but also provides non-safety services like navigation support, toll collection, web browsing, media streaming, etc. The existing communication frameworks like Dedicated Short Range Communication (DSRC) and Cellular V2X (C-V2X) might not meet the required capacity in the coming days. So, the vehicular community needs to adopt new technologies and upgrade the existing communication frameworks so that it can fulfill the desired expectations. Therefore, an increment in reliability and data rate is required. Multiple Input Multiple Output (MIMO), 5G New Radio, Low Density Parity Check (LDPC) Code, and Massive MIMO signal detection and equalization algorithms are the latest addition to the 5G wireless communication domain. These technologies have the potential to make the existing V2X communication framework more robust. As a result, more reliability and throughput can be achieved. This work demonstrates these technologies' compatibility and positive impact on existing V2X communication standard.
Date: December 2022
Creator: Dey, Utpal-Kumar
System: The UNT Digital Library

Integrating Multiple Deep Learning Models for Disaster Description in Low-Altitude Videos

Computer vision technologies are rapidly improving and becoming more important in disaster response. The majority of disaster description techniques now focus either on identify objects or categorize disasters. In this study, we trained multiple deep neural networks on low-altitude imagery with highly imbalanced and noisy labels. We utilize labeled images from the LADI dataset to formulate a solution for general problem in disaster classification and object detection. Our research integrated and developed multiple deep learning models that does the object detection task as well as the disaster scene classification task. Our solution is competitive in the TRECVID Disaster Scene Description and Indexing (DSDI) task, demonstrating that it is comparable to other suggested approaches in retrieving disaster-related video clips.
Date: December 2022
Creator: Wang, Haili
System: The UNT Digital Library
An Artificial Intelligence-Driven Model-Based Analysis of System Requirements for Exposing Off-Nominal Behaviors (open access)

An Artificial Intelligence-Driven Model-Based Analysis of System Requirements for Exposing Off-Nominal Behaviors

With the advent of autonomous systems and deep learning systems, safety pertaining to these systems has become a major concern. The existing failure analysis techniques are not enough to thoroughly analyze the safety in these systems. Moreover, because these systems are created to operate in various conditions, they are susceptible to unknown safety issues. Hence, we need mechanisms which can take into account the complexity of operational design domains, identify safety issues other than failures, and expose unknown safety issues. Moreover, existing safety analysis approaches require a lot of effort and time for analysis and do not consider machine learning (ML) safety. To address these limitations, in this dissertation, we discuss an artificial-intelligence driven model-based methodology that aids in identifying unknown safety issues and analyzing ML safety. Our methodology consists of 4 major tasks: 1) automated model generation, 2) automated analysis of component state transition model specification, 3) undesired states analysis, and 4) causal factor analysis. In our methodology we identify unknown safety issues by finding undesired combinations of components' states and environmental entities' states as well as causes resulting in these undesired combinations. In our methodology, we refer to the behaviors that occur because of undesired combinations as off-nominal …
Date: May 2021
Creator: Madala, Kaushik
System: The UNT Digital Library

Extracting Dimensions of Interpersonal Interactions and Relationships

People interact with each other through natural language to express feelings, thoughts, intentions, instructions etc. These interactions as a result form relationships. Besides names of relationships like siblings, spouse, friends etc., a number of dimensions (e.g. cooperative vs. competitive, temporary vs. enduring, equal vs. hierarchical etc.) can also be used to capture the underlying properties of interpersonal interactions and relationships. More fine-grained descriptors (e.g. angry, rude, nice, supportive etc.) can also be used to indicate the reasons or social-acts behind the dimension cooperative vs. competitive. The way people interact with others may also tell us about their personal traits, which in turn may be indicative of their probable success in their future. The works presented in the dissertation involve creating corpora with fine-grained descriptors of interactions and relationships. We also described experiments and their results that indicated that the processes of identifying the dimensions can be automated.
Date: August 2020
Creator: Rashid, Farzana
System: The UNT Digital Library
IoMT-Based Accurate Stress Monitoring for Smart Healthcare (open access)

IoMT-Based Accurate Stress Monitoring for Smart Healthcare

This research proposes Stress-Lysis, iLog and SaYoPillow to automatically detect and monitor the stress levels of a person. To self manage psychological stress in the framework of smart healthcare, a deep learning based novel system (Stress-Lysis) is proposed in this dissertation. The learning system is trained such that it monitors stress levels in a person through human body temperature, rate of motion and sweat during physical activity. The proposed deep learning system has been trained with a total of 26,000 samples per dataset and demonstrates accuracy as high as 99.7%. The collected data are transmitted and stored in the cloud, which can help in real time monitoring of a person's stress levels, thereby reducing the risk of death and expensive treatments. The proposed system has the ability to produce results with an overall accuracy of 98.3% to 99.7%, is simple to implement and its cost is moderate. Chronic stress, uncontrolled or unmonitored food consumption, and obesity are intricately connected, even involving certain neurological adaptations. In iLog we propose a system which can not only monitor but also create awareness for the user of how much food is too much. iLog provides information on the emotional state of a person along …
Date: May 2021
Creator: Rachakonda, Laavanya
System: The UNT Digital Library
Building Reliable and Cost-Effective Storage Systems for High-Performance Computing Datacenters (open access)

Building Reliable and Cost-Effective Storage Systems for High-Performance Computing Datacenters

In this dissertation, I first incorporate declustered redundant array of independent disks (RAID) technology in the existing system by maximizing the aggregated recovery I/O and accelerating post-failure remediation. Our analytical model affirms the accelerated data recovery stage significantly improves storage reliability. Then I present a proactive data protection framework that augments storage availability and reliability. It utilizes the failure prediction methods to efficiently rescue data on drives before failures occur, which significantly reduces the storage downtime and lowers the risk of nested failures. Finally, I investigate how an active storage system enables energy-efficient computing. I explore an emerging storage device named Ethernet drive to offload data-intensive workloads from the host to drives and process the data on drives. It not only minimizes data movement and power usage, but also enhances data availability and storage scalability. In summary, my dissertation research provides intelligence at the drive, storage node, and system levels to tackle the rising reliability challenge in modern HPC datacenters. The results indicate that this novel storage paradigm cost-effectively improves storage scalability, availability, and reliability.
Date: August 2020
Creator: Qiao, Zhi
System: The UNT Digital Library

Cooperative Perception for Connected Autonomous Vehicle Edge Computing System

This dissertation first conducts a study on raw-data level cooperative perception for enhancing the detection ability of self-driving systems for connected autonomous vehicles (CAVs). A LiDAR (Light Detection and Ranging sensor) point cloud-based 3D object detection method is deployed to enhance detection performance by expanding the effective sensing area, capturing critical information in multiple scenarios and improving detection accuracy. In addition, a point cloud feature based cooperative perception framework is proposed on edge computing system for CAVs. This dissertation also uses the features' intrinsically small size to achieve real-time edge computing, without running the risk of congesting the network. In order to distinguish small sized objects such as pedestrian and cyclist in 3D data, an end-to-end multi-sensor fusion model is developed to implement 3D object detection from multi-sensor data. Experiments show that by solving multiple perception on camera and LiDAR jointly, the detection model can leverage the advantages from high resolution image and physical world LiDAR mapping data, which leads the KITTI benchmark on 3D object detection. At last, an application of cooperative perception is deployed on edge to heal the live map for autonomous vehicles. Through 3D reconstruction and multi-sensor fusion detection, experiments on real-world dataset demonstrate that a …
Date: August 2020
Creator: Chen, Qi
System: The UNT Digital Library
A Study on Usability of Mobile Software Targeted at Elderly People in China (open access)

A Study on Usability of Mobile Software Targeted at Elderly People in China

With the rapid development of mobile device technology, smartphones are now not only the tool for young people but also for elderly people. However, the complicated steps of interacting with smartphones are stopping them from having a good user experience. One of the reasons is that application designers do not take consideration of the user group of elderly people. Our pilot survey shows that most elderly people lack the skills required to use a smartphone without obstacles, like typing. We also conducted an experiment with 8 participants that targeting on the usability of a daily used application, Contact List (CL), and based on a Chinese language system. We developed an android application that proposed a new method of showing the contact list according to the language usage of Chinese for this study. By asking participants to finish the same tasks on the traditional CL applications on their phones or on our application and observing their operations, we obtained useful feedback in terms of usability issues. Our experiment also tried to find out whether the method we proposed in the new application can lead to a better user experience for elderly people.
Date: May 2020
Creator: Jiang, Jingfu
System: The UNT Digital Library
Managing Access during Employee Separation using Blockchain Technology (open access)

Managing Access during Employee Separation using Blockchain Technology

On-boarding refers to bringing in an employee to a company and granting access to new hires. However, a person may go through different stages of employment, hold different jobs by the same employer and have different levels of information access during the employment duration. A shared services organization may have either limited or wide-spread access within certain groups. Off-boarding implies the removal of access of information or physical devices such as keys, computers or mobile devices when the employee leaves. Off-boarding is the management of the separation an employee from an institution. Many organizations use different steps that constitute the off-boarding process. Incomplete tracking of an employee's access is a security risk and can lead to unintended exposure of company information and assets. Blockchain technology combines blocks of information together using a cryptographic algorithm based on the existing previous block and is verified by the peers in the blockchain network. This process creates an immutable record of employee system access providing an audit trail of access for any point in time to ensure that all access permissions can be removed once employment ends. This project proposes using blockchain technology to consolidate information across disparate groups, and to automate access removal …
Date: May 2020
Creator: Mears, Paula Faye
System: The UNT Digital Library
Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework (open access)

Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework

Epilepsy affects up to 1% of the world's population and approximately 2.5 million people in the United States. A considerable portion (30%) of epilepsy patients are refractory to antiepileptic drugs (AEDs), and surgery can not be an effective candidate if the focus of the seizure is on the eloquent cortex. To overcome the problems with existing solutions, a notable portion of biomedical research is focused on developing an implantable or wearable system for automated seizure detection and control. Seizure detection algorithms based on signal rejection algorithms (SRA), deep neural networks (DNN), and neighborhood component analysis (NCA) have been proposed in the IoMT framework. The algorithms proposed in this work have been validated with both scalp and intracranial electroencephalography (EEG, icEEG), and demonstrate high classification accuracy, sensitivity, and specificity. The occurrence of seizure can be controlled by direct drug injection into the epileptogenic zone, which enhances the efficacy of the AEDs. Piezoelectric and electromagnetic micropumps have been explored for the use of a drug delivery unit, as they provide accurate drug flow and reduce power consumption. The reduction in power consumption as a result of minimal circuitry employed by the drug delivery system is making it suitable for practical biomedical applications. …
Date: May 2020
Creator: Sayeed, Md Abu
System: The UNT Digital Library

Optimization of Massive MIMO Systems for 5G Networks

In the first part of the dissertation, we provide an extensive overview of sub-6 GHz wireless access technology known as massive multiple-input multiple-output (MIMO) systems, highlighting its benefits, deployment challenges, and the key enabling technologies envisaged for 5G networks. We investigate the fundamental issues that degrade the performance of massive MIMO systems such as pilot contamination, precoding, user scheduling, and signal detection. In the second part, we optimize the performance of the massive MIMO system by proposing several algorithms, system designs, and hardware architectures. To mitigate the effect of pilot contamination, we propose a pilot reuse factor scheme based on the user environment and the number of active users. The results through simulations show that the proposed scheme ensures the system always operates at maximal spectral efficiency and achieves higher throughput. To address the user scheduling problem, we propose two user scheduling algorithms bases upon the measured channel gain. The simulation results show that our proposed user scheduling algorithms achieve better error performance, improve sum capacity and throughput, and guarantee fairness among the users. To address the uplink signal detection challenge in the massive MIMO systems, we propose four algorithms and their system designs. We show through simulations that the …
Date: August 2020
Creator: Chataut, Robin
System: The UNT Digital Library
BC Framework for CAV Edge Computing (open access)

BC Framework for CAV Edge Computing

Edge computing and CAV (Connected Autonomous Vehicle) fields can work as a team. With the short latency and high responsiveness of edge computing, it is a better fit than cloud computing in the CAV field. Moreover, containerized applications are getting rid of the annoying procedures for setting the required environment. So that deployment of applications on new machines is much more user-friendly than before. Therefore, this paper proposes a framework developed for the CAV edge computing scenario. This framework consists of various programs written in different languages. The framework uses Docker technology to containerize these applications so that the deployment could be simple and easy. This framework consists of two parts. One is for the vehicle on-board unit, which exposes data to the closest edge device and receives the output generated by the edge device. Another is for the edge device, which is responsible for collecting and processing big load of data and broadcasting output to vehicles. So the vehicle does not need to perform the heavyweight tasks that could drain up the limited power.
Date: May 2020
Creator: Chen, Haidi
System: The UNT Digital Library

Combinatorial-Based Testing Strategies for Mobile Application Testing

This work introduces three new coverage criteria based on combinatorial-based event and element sequences that occur in the mobile environment. The novel combinatorial-based criteria are used to reduce, prioritize, and generate test suites for mobile applications. The combinatorial-based criteria include unique coverage of events and elements with different respects to ordering. For instance, consider the coverage of a pair of events, e1 and e2. The least strict criterion, Combinatorial Coverage (CCov), counts the combination of these two events in a test case without respect to the order in which the events occur. That is, the combination (e1, e2) is the same as (e2, e1). The second criterion, Sequence-Based Combinatorial Coverage (SCov), considers the order of occurrence within a test case. Sequences (e1, ..., e2) and (e2,..., e1) are different sequences. The third and strictest criterion is Consecutive-Sequence Combinatorial Coverage (CSCov), which counts adjacent sequences of consecutive pairs. The sequence (e1, e2) is only counted if e1 immediately occurs before e2. The first contribution uses the novel combinatorial-based criteria for the purpose of test suite reduction. Empirical studies reveal that the criteria, when used with event sequences and sequences of size t=2, reduce the test suites by 22.8%-61.3% while the reduced …
Date: December 2020
Creator: Michaels, Ryan P.
System: The UNT Digital Library

Red Door: Firewall Based Access Control in ROS

ROS is a set of computer operating system framework designed for robot software development, and Red Door, a lightweight software firewall that serves the ROS, is intended to strengthen its security. ROS has many flaws in security, such as clear text transmission of data, no authentication mechanism, etc. Red Door can achieve identity verification and access control policy with a small performance loss, all without modifying the ROS source code, to ensure the availability and authentication of ROS applications to the greatest extent.
Date: December 2020
Creator: Shen, Ziyi
System: The UNT Digital Library
A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles (open access)

A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles

As the technology in the field of computer vision becomes more and more mature, the autonomous vehicles have achieved rapid developments in recent years. However, the object detection and classification tasks of autonomous vehicles which are based on cameras may face problems when the vehicle is driving at a relatively high speed. One is that the camera will collect blurred photos when driving at high speed which may affect the accuracy of deep neural networks. The other is that small objects far away from the vehicle are difficult to be recognized by networks. In this paper, we present a method to combine two kinds of GANs to solve these problems. We choose DeblurGAN as the base model to remove blur in images. SRGAN is another GAN we choose for solving small object detection problems. Due to the total time of these two are too long, we still do the model compression on it to make it lighter. Then we use the Yolov4 to do the object detection. Finally we do the evaluation of the whole model architecture and proposed a model version 2 based on DeblurGAN and ESPCN which is faster than previous one but the accuracy may be lower.
Date: December 2020
Creator: Ye, Fanjie
System: The UNT Digital Library
An Investigation of Scale Factor in Deep Networks for Scene Recognition (open access)

An Investigation of Scale Factor in Deep Networks for Scene Recognition

Is there a significant difference in the design of deep networks for the tasks of classifying object-centric images and scenery images? How to design networks that extract the most representative features for scene recognition? To answer these questions, we design studies to examine the scales and richness of image features for scenery image recognition. Three methods are proposed that integrate the scale factor to the deep networks and reveal the fundamental network design strategies. In our first attempt to integrate scale factors into the deep network, we proposed a method that aggregates both the context and multi-scale object information of scene images by constructing a multi-scale pyramid. In our design, integration of object-centric multi-scale networks achieved a performance boost of 9.8%; integration of object- and scene-centric models obtained an accuracy improvement of 5.9% compared with single scene-centric models. We also exploit bringing the attention scheme to the deep network and proposed a Scale Attentive Network (SANet). The SANet streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the inter-dependency among scales, and further assists feature re-calibration as well as the aggregation process. The proposed network achieved a Top-1 accuracy increase by 1.83% on …
Date: May 2022
Creator: Qiao, Zhinan
System: The UNT Digital Library
Design of a Low-Cost Spirometer to Detect COPD and Asthma for Remote Health Monitoring (open access)

Design of a Low-Cost Spirometer to Detect COPD and Asthma for Remote Health Monitoring

This work develops a simple and low-cost microphone-based spirometer with a scalable infrastructure that can be used to monitor COPD and Asthma symptoms. The data acquired from the system is archived in the cloud for further procuring and reporting. To develop this system, we utilize an off-the-shelf ESP32 development board, MEMS microphone, oxygen mask, and 3D printable mounting tube to keep the costs low. The system utilizes the MEMS microphone to measure the audio signal of a user's exhalation, calculates diagnostic estimations and uploads the estimations to the cloud to be remotely monitored. Our results show a practical system that can identify COPD and Asthma symptoms and report the data to both the patient and the physician. The system developed can provide a means of gathering respiratory data to better assist doctors and assess patients to provide remote care.
Date: May 2022
Creator: Olvera, Alejandro
System: The UNT Digital Library

Autonomic Zero Trust Framework for Network Protection

With the technological improvements, the number of Internet connected devices is increasing tremendously. We also observe an increase in cyberattacks since the attackers want to use all these interconnected devices for malicious intention. Even though there exist many proactive security solutions, it is not practical to run all the security solutions on them as they have limited computational resources and even battery operated. As an alternative, Zero Trust Architecture (ZTA) has become popular is because it defines boundaries and requires to monitor all events, configurations, and connections and evaluate them to enforce rejecting by default and accepting only if they are known and accepted as well as applies a continuous trust evaluation. In addition, we need to be able to respond as quickly as possible, which cannot be managed by human interaction but through autonomous computing paradigm. Therefore, in this work, we propose a framework that would implement ZTA using autonomous computing paradigm. The proposed solution, Autonomic ZTA Management Engine (AZME) framework, focusing on enforcing ZTA on network, uses a set of sensors to monitor a network, a set of user-defined policies to define which actions to be taken (through controller). We have implemented a Python prototype as a proof-of-concept …
Date: May 2022
Creator: Durflinger, James
System: The UNT Digital Library