Integrity Verification of Applications on RADIUM Architecture (open access)

Integrity Verification of Applications on RADIUM Architecture

Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept …
Date: August 2015
Creator: Tarigopula, Mohan Krishna
System: The UNT Digital Library
Radium: Secure Policy Engine in Hypervisor (open access)

Radium: Secure Policy Engine in Hypervisor

The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a …
Date: August 2015
Creator: Shah, Tawfiq M.
System: The UNT Digital Library
Unique Channel Email System (open access)

Unique Channel Email System

Email connects 85% of the world. This paper explores the pattern of information overload encountered by majority of email users and examine what steps key email providers are taking to combat the problem. Besides fighting spam, popular email providers offer very limited tools to reduce the amount of unwanted incoming email. Rather, there has been a trend to expand storage space and aid the organization of email. Storing email is very costly and harmful to the environment. Additionally, information overload can be detrimental to productivity. We propose a simple solution that results in drastic reduction of unwanted mail, also known as graymail.
Date: August 2015
Creator: Balakchiev, Milko
System: The UNT Digital Library
Towards Resistance Detection in Health Behavior Change Dialogue Systems (open access)

Towards Resistance Detection in Health Behavior Change Dialogue Systems

One of the challenges fairly common in motivational interviewing is patient resistance to health behavior change. Hence, automated dialog systems aimed at counseling patients need to be capable of detecting resistance and appropriately altering dialog. This thesis focusses primarily on the development of such a system for automatic identification of patient resistance to behavioral change. This enables the dialogue system to direct the discourse towards a more agreeable ground and helping the patient overcome the obstacles in his or her way to change. This thesis also proposes a dialogue system framework for health behavior change via natural language analysis and generation. The proposed framework facilitates automated motivational interviewing from clinical psychology and involves three broad stages: rapport building and health topic identification, assessment of the patient’s opinion about making a change, and developing a plan. Using this framework patients can be encouraged to reflect on the options available and choose the best for a healthier life.
Date: August 2015
Creator: Sarma, Bandita
System: The UNT Digital Library
Computational Methods for Discovering and Analyzing Causal Relationships in Health Data (open access)

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of …
Date: August 2015
Creator: Liang, Yiheng
System: The UNT Digital Library
Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator (open access)

Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator

Software applications’ performance is hindered by a variety of factors, but most notably by the well-known CPU-memory speed gap (often known as the memory wall). This results in the CPU sitting idle waiting for data to be brought from memory to processor caches. The addressing used by caches cause non-uniform accesses to various cache sets. The non-uniformity is due to several reasons, including how different objects are accessed by the code and how the data objects are located in memory. Memory allocators determine where dynamically created objects are placed, thus defining addresses and their mapping to cache locations. It is important to evaluate how different allocators behave with respect to the localities of the created objects. Most allocators use a single attribute, the size, of an object in making allocation decisions. Additional attributes such as the placement with respect to other objects, or specific cache area may lead to better use of cache memories. In this dissertation, we proposed and implemented a framework that allows for the development and evaluation of new memory allocation techniques. At the root of the framework is a memory tracing tool called Gleipnir, which provides very detailed information about every memory access, and relates it …
Date: August 2013
Creator: Janjusic, Tomislav
System: The UNT Digital Library
Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements (open access)

Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

The effectiveness of colonoscopy depends on the quality of the inspection of the colon. There was no automated measurement method to evaluate the quality of the inspection. This thesis addresses this issue by investigating an automated post-procedure quality measurement technique and proposing a novel approach automatically deciding a percentage of stool areas in images of digitized colonoscopy video files. It involves the classification of image pixels based on their color features using a new method of planes on RGB (red, green and blue) color space. The limitation of post-procedure quality measurement is that quality measurements are available long after the procedure was done and the patient was released. A better approach is to inform any sub-optimal inspection immediately so that the endoscopist can improve the quality in real-time during the procedure. This thesis also proposes an extension to post-procedure method to detect stool, bite-block, and blood regions in real-time using color features in HSV color space. These three objects play a major role in quality measurements in colonoscopy. The proposed method partitions very large positive examples of each of these objects into a number of groups. These groups are formed by taking intersection of positive examples with a hyper plane. …
Date: August 2013
Creator: Kumara, Muthukudage Jayantha
System: The UNT Digital Library
Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos (open access)

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to …
Date: August 2013
Creator: Nawarathna, Ruwan D.
System: The UNT Digital Library
Design and Analysis of Novel Verifiable Voting Schemes (open access)

Design and Analysis of Novel Verifiable Voting Schemes

Free and fair elections are the basis for democracy, but conducting elections is not an easy task. Different groups of people are trying to influence the outcome of the election in their favor using the range of methods, from campaigning for a particular candidate to well-financed lobbying. Often the stakes are too high, and the methods are illegal. Two main properties of any voting scheme are the privacy of a voter’s choice and the integrity of the tally. Unfortunately, they are mutually exclusive. Integrity requires making elections transparent and auditable, but at the same time, we must preserve a voter’s privacy. It is always a trade-off between these two requirements. Current voting schemes favor privacy over auditability, and thus, they are vulnerable to voting fraud. I propose two novel voting systems that can achieve both privacy and verifiability. The first protocol is based on cryptographical primitives to ensure the integrity of the final tally and privacy of the voter. The second protocol is a simple paper-based voting scheme that achieves almost the same level of security without usage of cryptography.
Date: December 2013
Creator: Yestekov, Yernat
System: The UNT Digital Library
Real-time Rendering of Burning Objects in Video Games (open access)

Real-time Rendering of Burning Objects in Video Games

In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain …
Date: August 2013
Creator: Amarasinghe, Dhanyu Eshaka
System: The UNT Digital Library
Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics (open access)

Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk …
Date: December 2013
Creator: Gomez-Lopez, Iris Nelly
System: The UNT Digital Library
Boosting for Learning From Imbalanced, Multiclass Data Sets (open access)

Boosting for Learning From Imbalanced, Multiclass Data Sets

In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared …
Date: December 2013
Creator: Abouelenien, Mohamed
System: The UNT Digital Library
Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in  the Disease Prevalence in Homogenous and Heterogeneous Human Populations (open access)

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to …
Date: August 2016
Creator: Bravo-Salgado, Angel D
System: The UNT Digital Library
Object Recognition Using Scale-Invariant Chordiogram (open access)

Object Recognition Using Scale-Invariant Chordiogram

This thesis describes an approach for object recognition using the chordiogram shape-based descriptor. Global shape representations are highly susceptible to clutter generated due to the background or other irrelevant objects in real-world images. To overcome the problem, we aim to extract precise object shape using superpixel segmentation, perceptual grouping, and connected components. The employed shape descriptor chordiogram is based on geometric relationships of chords generated from the pairs of boundary points of an object. The chordiogram descriptor applies holistic properties of the shape and also proven suitable for object detection and digit recognition mechanisms. Additionally, it is translation invariant and robust to shape deformations. In spite of such excellent properties, chordiogram is not scale-invariant. To this end, we propose scale invariant chordiogram descriptors and intend to achieve a similar performance before and after applying scale invariance. Our experiments show that we achieve similar performance with and without scale invariance for silhouettes and real world object images. We also show experiments at different scales to confirm that we obtain scale invariance for chordiogram.
Date: May 2017
Creator: Tonge, Ashwini
System: The UNT Digital Library
Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence (open access)

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
Date: May 2017
Creator: Gopalakrishnan, Arjun
System: The UNT Digital Library
A Data-Driven Computational Framework to Assess the Risk of Epidemics at Global Mass Gatherings (open access)

A Data-Driven Computational Framework to Assess the Risk of Epidemics at Global Mass Gatherings

This dissertation presents a data-driven computational epidemic framework to simulate disease epidemics at global mass gatherings. The annual Muslim pilgrimage to Makkah, Saudi Arabia is used to demonstrate the simulation and analysis of various disease transmission scenarios throughout the different stages of the event from the arrival to the departure of international participants. The proposed agent-based epidemic model efficiently captures the demographic, spatial, and temporal heterogeneity at each stage of the global event of Hajj. Experimental results indicate the substantial impact of the demographic and mobility patterns of the heterogeneous population of pilgrims on the progression of the disease spread in the different stages of Hajj. In addition, these simulations suggest that the differences in the spatial and temporal settings in each stage can significantly affect the dynamic of the disease. Finally, the epidemic simulations conducted at the different stages in this dissertation illustrate the impact of the differences between the duration of each stage in the event and the length of the infectious and latent periods. This research contributes to a better understanding of epidemic modeling in the context of global mass gatherings to predict the risk of disease pandemics caused by associated international travel. The computational modeling and …
Date: May 2019
Creator: Alshammari, Sultanah
System: The UNT Digital Library
Extracting Temporally-Anchored Spatial Knowledge (open access)

Extracting Temporally-Anchored Spatial Knowledge

In my dissertation, I elaborate on the work that I have done to extract temporally-anchored spatial knowledge from text, including both intra- and inter-sentential knowledge. I also detail multiple approaches to infer spatial timeline of a person from biographies and social media. I present and analyze two strategies to annotate information regarding whether a given entity is or is not located at some location, and for how long with respect to an event. Specifically, I leverage semantic roles or syntactic dependencies to generate potential spatial knowledge and then crowdsource annotations to validate the potential knowledge. The resulting annotations indicate how long entities are or are not located somewhere, and temporally anchor this spatial information. I present an in-depth corpus analysis and experiments comparing the spatial knowledge generated by manipulating roles or dependencies. In my work, I also explore research methodologies that go beyond single sentences and extract spatio-temporal information from text. Spatial timelines refer to a chronological order of locations where a target person is or is not located. I present corpus and experiments to extract spatial timelines from Wikipedia biographies. I present my work on determining locations and the order in which they are actually visited by a person …
Date: May 2019
Creator: Vempala, Alakananda
System: The UNT Digital Library
Networking of UAVs Using 802.11s (open access)

Networking of UAVs Using 802.11s

The thesis simulates the problem of network connectivity that occurs due to the dynamic nature of a network during flight. Nine nodes are provided with initial positions and are flown based on the path provided by leader-follower control algorithm using the server-client model. The application layer provides a point to point connection between the server and client and by using socket programming in the transport layer, a server and clients are established. Each node performs a neighbor discovery to discover its neighbors in the data link layer and physical layer performs the CSMA/CA using RTS/CTS. Finally, multi hop routing is achieved in network layer. Each client connects with server at dedicated interval to share each other location and then moves to next location. This process is continued over a period of several iterations until the relative distance is achieved. The constraints and limitations of the technology are network connectivity is lack of flexibility for random location of nodes, links established with a distant node having single neighbor is unstable. Performance of a system decreases with increase in number of nodes.
Date: May 2019
Creator: Polumuru, Pushpa
System: The UNT Digital Library
Accurate Joint Detection from Depth Videos towards Pose Analysis (open access)

Accurate Joint Detection from Depth Videos towards Pose Analysis

Joint detection is vital for characterizing human pose and serves as a foundation for a wide range of computer vision applications such as physical training, health care, entertainment. This dissertation proposed two methods to detect joints in the human body for pose analysis. The first method detects joints by combining body model and automatic feature points detection together. The human body model maps the detected extreme points to the corresponding body parts of the model and detects the position of implicit joints. The dominant joints are detected after implicit joints and extreme points are located by a shortest path based methods. The main contribution of this work is a hybrid framework to detect joints on the human body to achieve robustness to different body shapes or proportions, pose variations and occlusions. Another contribution of this work is the idea of using geodesic features of the human body to build a model for guiding the human pose detection and estimation. The second proposed method detects joints by segmenting human body into parts first and then detect joints by making the detection algorithm focusing on each limb. The advantage of applying body part segmentation first is that the body segmentation method narrows …
Date: May 2018
Creator: Kong, Longbo
System: The UNT Digital Library
Computational Approaches for Analyzing Social Support in Online Health Communities (open access)

Computational Approaches for Analyzing Social Support in Online Health Communities

Online health communities (OHCs) have become a medium for patients to share their personal experiences and interact with peers on topics related to a disease, medication, side effects, and therapeutic processes. Many studies show that using OHCs regularly decreases mortality and improves patients mental health. As a result of their benefits, OHCs are a popular place for patients to refer to, especially patients with a severe disease, and to receive emotional and informational support. The main reasons for developing OHCs are to present valid and high-quality information and to understand the mechanism of social support in changing patients' mental health. Given the purpose of OHC moderators for developing OHCs applications and the purpose of patients for using OHCs, there is no facility, feature, or sub-application in OHCs to satisfy patient and moderator goals. OHCs are only equipped with a primary search engine that is a keyword-based search tool. In other words, if a patient wants to obtain information about a side-effect, he/she needs to browse many threads in the hope that he/she can find several related comments. In the same way, OHC moderators cannot browse all information which is exchanged among patients to validate their accuracy. Thus, it is critical …
Date: May 2018
Creator: Khan Pour, Hamed
System: The UNT Digital Library
Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions (open access)

Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions

Human body is a complex system organized at different levels such as cells, tissues and organs, which contributes to 11 important organ systems. The functional efficiency of this complex system is evaluated as health. Traditional healthcare is unable to accommodate everyone's need due to the ever-increasing population and medical costs. With advancements in technology and medical research, traditional healthcare applications are shaping into smart healthcare solutions. Smart healthcare helps in continuously monitoring our body parameters, which helps in keeping people health-aware. It provides the ability for remote assistance, which helps in utilizing the available resources to maximum potential. The backbone of smart healthcare solutions is Internet of Things (IoT) which increases the computing capacity of the real-world components by using cloud-based solutions. The basic elements of these IoT based smart healthcare solutions are called "things." Things are simple sensors or actuators, which have the capacity to wirelessly connect with each other and to the internet. The research for this dissertation aims in developing architectures for these things, focusing on IoT-based smart healthcare solutions. The core for this dissertation is to contribute to the research in smart healthcare by identifying applications which can be monitored remotely. For this, application-specific thing architectures …
Date: May 2018
Creator: Sundaravadivel, Prabha
System: The UNT Digital Library
Simulation of Dengue Outbreak in Thailand (open access)

Simulation of Dengue Outbreak in Thailand

The dengue virus has become widespread worldwide in recent decades. It has no specific treatment and affects more than 40% of the entire population in the world. In Thailand, dengue has been a health concern for more than half a century. The highest number of cases in one year was 174,285 in 1987, leading to 1,007 deaths. In the present day, dengue is distributed throughout the entire country. Therefore, dengue has become a major challenge for public health in terms of both prevention and control of outbreaks. Different methodologies and ways of dealing with dengue outbreaks have been put forward by researchers. Computational models and simulations play an important role, as they have the ability to help researchers and officers in public health gain a greater understanding of the virus's epidemic activities. In this context, this dissertation presents a new framework, Modified Agent-Based Modeling (mABM), a hybrid platform between a mathematical model and a computational model, to simulate a dengue outbreak in human and mosquito populations. This framework improves on the realism of former models by utilizing the reported data from several Thai government organizations, such as the Thai Ministry of Public Health (MoPH), the National Statistical Office, and others. …
Date: August 2018
Creator: Meesumrarn, Thiraphat
System: The UNT Digital Library
Secure and Trusted Execution Framework for Virtualized Workloads (open access)

Secure and Trusted Execution Framework for Virtualized Workloads

In this dissertation, we have analyzed various security and trustworthy solutions for modern computing systems and proposed a framework that will provide holistic security and trust for the entire lifecycle of a virtualized workload. The framework consists of 3 novel techniques and a set of guidelines. These 3 techniques provide necessary elements for secure and trusted execution environment while the guidelines ensure that the virtualized workload remains in a secure and trusted state throughout its lifecycle. We have successfully implemented and demonstrated that the framework provides security and trust guarantees at the time of launch, any time during the execution, and during an update of the virtualized workload. Given the proliferation of virtualization from cloud servers to embedded systems, techniques presented in this dissertation can be implemented on most computing systems.
Date: August 2018
Creator: Kotikela, Srujan D
System: The UNT Digital Library
Detecting Component Failures and Critical Components in Safety Critical Embedded Systems using Fault Tree Analysis (open access)

Detecting Component Failures and Critical Components in Safety Critical Embedded Systems using Fault Tree Analysis

Component failures can result in catastrophic behaviors in safety critical embedded systems, sometimes resulting in loss of life. Component failures can be treated as off nominal behaviors (ONBs) with respect to the components and sub systems involved in an embedded system. A lot of research is being carried out to tackle the problem of ONBs. These approaches are mainly focused on the states (i.e., desired and undesired states of a system at a given point of time to detect ONBs). In this paper, an approach is discussed to detect component failures and critical components of an embedded system. The approach is based on fault tree analysis (FTA), applied to the requirements specification of embedded systems at design time to find out the relationship between individual component failures and overall system failure. FTA helps in determining both qualitative and quantitative relationship between component failures and system failure. Analyzing the system at design time helps in detecting component failures and critical components and helps in devising strategies to mitigate component failures at design time and improve overall safety and reliability of a system.
Date: May 2018
Creator: Bhandaram, Abhinav
System: The UNT Digital Library