Suburban Succession and Stream Dynamics

Increasingly higher numbers of people are moving into urbanizing environments, yet our understanding of ecosystem consequences of rapid urbanization is still in its infancy. In this dissertation, I assessed dynamics of residential landscapes during suburban succession and consequences for ecosystem functioning. First, I used a space-for-time approach to quantify more than a century of suburban succession in the Dallas – Fort Worth metroplex (DFW). Attributes of residential landscape plant diversity and habitat complexity were quantified for 232 individual properties nested within 14 neighborhoods constructed between 1906 and 2020. Suburban succession progressed from simple turf lawns with limited habitat complexity to landscapes dominated by deciduous trees and high habitat complexity, but homeowner decisions related to landscape management affect the rate of that transition and the number of plants and taxa present. Next, I used the novel spatial construct of "neighborhoodsheds" to test for effects of suburban succession on carbon export, and found that the proportion of carbon derived from C3 vs. C4 plants was affected by neighborhood plant community structure (i.e. greater proportion of trees and shrubs primarily in later stages of suburban succession). Finally, I conducted a mesocosm experiment to test effects of changes in allochthonous inputs during suburban succession …
Date: December 2023
Creator: McGillewie, Sara B.
System: The UNT Digital Library
Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans (open access)

Glucose-Induced Developmental Delay is Modulated by Insulin Signaling and Exacerbated in Subsequent Glucose-Fed Generations in Caenorhabditis elegans

In this study, we have used genetic, cell biological and transcriptomic methods in the nematode C. elegans as a model to examine the impact of glucose supplementation during development. We show that a glucose-supplemented diet slows the rate of developmental progression (termed "glucose-induced developmental delay" or GIDD) and induces the mitochondrial unfolded protein response (UPRmt) in wild-type animals. Mutation in the insulin receptor daf-2 confers resistance to GIDD and UPRmt in a daf-16-dependent manner. We hypothesized that daf-2(e1370) animals alter their metabolism to manage excess glucose. To test this, we used RNA-sequencing which revealed that the transcriptomic profiles of glucose-supplemented wildtype and daf-2(e1370) animals are distinct. From this, we identified a set of 27 genes which are both exclusively upregulated in daf-2(e1370) animals fed a glucose-supplemented diet and regulated by daf-16, including a fatty acid desaturase (fat-5), and two insulin-like peptides (ins-16 and ins-35). Mutation of any of these genes suppresses the resistance of daf-2(e1370) to GIDD. Additionally, double mutation of ins-16 and ins-35 in a daf-2(e1370) background results in an increase in constitutive dauer formation which is suppressed by glucose supplementation. Further investigation of the insulin-like peptides revealed that ins-16 mutation in a wild-type background results in upregulation of …
Date: December 2023
Creator: Nahar, Saifun
System: The UNT Digital Library

Investigating the Molecular Framesworks of Phloem-Cap Fiber Development in Cotton (Gossypium hirsutum)

The current study focuses on the vascular cambium and the reiterative formation of phloem fiber bundles in cotton stems. The role of the TDIF-PXY-WOX pathway was examined in regulating cambial activity and the differentiation of phloem fibers. A study was conducted to identify and characterize the cotton WOX family genes, focusing on WOX4 and WOX14, aiming to identify and analyze their phylogenetic relationships, tissue-specific expression profiles, functional roles, and metabolic consequences. Through a sequence analysis of the Gossypium hirsutum genome, 42 cotton loci were identified as WOX family members. GhWOX4 exhibited a close homology to 7 loci, while GhWOX14 displayed homology with 8 loci. Tissue-specific expression analysis revealed prominent expression patterns of GhWOX4 and GhWOX14 in cotton internodes and roots, suggesting their involvement in vascular tissue development. Functional studies utilizing VIGS (virus-induced gene silencing) demonstrated that the knockdown of GhWOX4 and GhWOX14 resulted in a significant reduction in stem diameter and bast fiber production. This result suggests that secondary phloem fiber development is regulated by GhWOX4 and GhWOX14 genes in cotton. Additionally, the metabolic profiling of VIGS plants revealed significant alterations in amino acids, organic acids, and sugars, with implications for primary metabolic pathways. These findings suggest that GhWOX4 and …
Date: December 2023
Creator: Kaur, Harmanpreet
System: The UNT Digital Library

Factors Affecting MeHg Contamination of Spiders and Insect-Mediated MeHg Flux from Human-Made Ponds

The present study focused on methylmercury (MeHg) in emergent aquatic insects and spiders from human-made ponds. This dissertation addresses two main topics: (1) factors affecting variation in spider MeHg concentrations around human-made ponds and (2) the magnitude of MeHg transported out of human-made ponds by emergent aquatic insects (insect-mediated MeHg flux). Spiders were specifically targeted in this study because they have been proposed as sentinels of MeHg contamination (organism whose tissue concentrations reflect the level of MeHg in the environment). Spider MeHg concentrations were related to spider diet, size, and proximity to waterbody, but affected individual spider taxa differently. In a second study, I found that only "large" spiders within a taxa had tissue concentrations positively related to prey MeHg concentrations. These results indicate that the relationship between spider and prey MeHg could be size-dependent and that "large" spiders within a taxa may better reflect ambient MeHg contamination. Finally, I tested a conceptual model hypothesizing insect-mediated MeHg flux from human-made ponds is controlled by pond permanence and fish presence. In agreement with the conceptual model, insect-mediated MeHg flux from ponds was suppressed by the presence of fish, likely due to fish predation on emergent insect larvae. I found the mean …
Date: December 2023
Creator: Hannappel, Madeline Pratt
System: The UNT Digital Library
Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents (open access)

Investigating Novel Streptomyces Bacteriophage Endolysins as Potential Antimicrobial Agents

As antibiotic resistance has become a major global threat, the World Health Organization has urgently called scientists for alternative strategies for control of bacterial infections. Endolysin, a protein encoded by a phage gene, can degrade bacterial peptidoglycan (PG). Currently, there are three endolysin products in the clinical phase. We, thus, are interested in exploring novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using bioinformatics tools, we identified nine functional domain groups from 250 Streptomyces phages putative endolysins. NootNoot gp34 (transglycosylase; Nt34lys), Nabi gp26 (amidase; Nb26lys), Tribute gp42 (PGRP; Tb42lys), and LazerLemon gp35 (CHAP; LL35lys) were selected for experimental studies. We hypothesized that (1) the proteins of interest will have the ability to degrade PG, and (2) the proteins will be potential antimicrobial agents against ESKAPE safe relatives. The results showed that LL35lys, Nb26lys and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (400 µg/mL) can reduce PG turbidity to 32-40%. The killing assay suggested that Tb42lys possess a boarder range (Escherichia coli, Pseudomonas putida, Acinetobacter baylyi and Klebsiella aerogenes). While Nb26lys can attack Gram-negative bacteria, LL35lys can only reduce the growth of the Gram-positive strains with an MIC90 of 2 …
Date: December 2023
Creator: Maneekul, Jindanuch
System: The UNT Digital Library

Secondary Production of Dragonflies: Comparing Ecosystem Function of Ponds within an Urban Landscape in North Central Texas

The change of land use to include more urban areas is considered one of the main threats to biodiversity worldwide. Urban stormwater retention ponds have been built to collect storm runoff intensified by the increase in impervious surfaces. Although subject to environmental pressures like habitat degradation and pollution, these stormwater retention ponds are diversity hotspots by providing habitat for several aquatic and semi-aquatic species, including dragonflies. Previous research in Denton, Texas, has demonstrated that urban stormwater retention ponds support high taxa richness of adult dragonflies, but not for the aquatic nymphs. The current study builds on what we have seen by focusing on the immature aquatic stage as nymphs using secondary production of dominant dragonfly taxa and community structure to compare ecosystem function in three ponds with differing intensities of land use. Comparing communities and secondary production resulted in specific conductivity, dissolved oxygen, complex vegetation, and abundance explaining the differences between dragonfly communities. Secondary production was dependent on abundance which followed the intensity of urban land use surrounding the pond. This study supports that urban land use does have an effect on the functioning of the ponds and shows the importance of studying the communities over a year to get …
Date: July 2023
Creator: Stallings, Gillian Carol
System: The UNT Digital Library

Fatty Acid Amide Hydrolases in Upland Cotton (Gossypium hirsutum L.) and the Legume Model Medicago truncatula

Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, best known for inactivating the signal of N-acylethanolamine (NAE) lipid mediators. In the plant Arabidopsis thaliana, FAAH-mediated hydrolysis of NAEs has been associated with numerous biological processes. Recently, the phylogenetic distribution of FAAH into two major branches (group I and II FAAHs) across angiosperms outside of Arabidopsis (and in other Brassicaceae), suggests a previously unrecognized complexity of this enzyme. Although A. thaliana has long been used to assess biological questions for plants, in this case it will fall short in understanding the significance of multiple FAAHs in other plant systems. Thus, in this study, I examined the role (s) of six FAAH isoforms in upland cotton (Gossypium hirsutum L.) and two FAAHs in the legume Medicago truncatula.
Date: December 2023
Creator: Arias Gaguancela, Omar Paul
System: The UNT Digital Library

Identification and Characterization of Genes Required for Symbiotic Nitrogen Fixation in Medicago truncatula Tnt1 Insertion Mutants

In this dissertation I am using M. truncatula as a model legume that forms indeterminate nodules with rhizobia under limited nitrogen conditions. I take advantage of an M. truncatula Tnt1 mutant population that provides a useful resource to uncover and characterize novel genes. Here, I focused on several objectives. First, I carried out forward and reverse genetic screening of M. truncatula Tnt1 mutant populations to uncover novel genes involved in symbiotic nitrogen fixation. Second, I focused on reverse genetic screening of two genes, identified as encoding blue copper proteins, and characterization of their mutants' potential phenotypes. Third, I further characterized a nodule essential gene, M. truncatula vacuolar iron transporter like 8 (MtVTL8), which encodes a nodule specific iron transporter. I characterized the expression pattern, expression localization and function of MtVTL8. Additionally, I characterized several residues predicted to be essential to function using a model based on the known crystal structure of Eucalyptus grandis vacuolar iron transporter 1 (EgVIT1), a homologous protein to MtVTL8. I identified several potential essential residues of the MtVTL8 protein, mutagenized them, and through complementation experiments in planta and in yeast assessed functionality of the resulting protein. This helped us to better understand the potential mechanism by …
Date: July 2023
Creator: Cai, Jingya
System: The UNT Digital Library

Reduced Visceral Fat and Biological Indices of Inflammation Following Combined Prebiotic/Probiotic Supplementation in Free Living Adults

Probiotics/prebiotic supplementation represents a viable option for addressing systemic inflammation and chronic disease risk resulting from excessive body weight. The purpose of this feasibility study was to determine if 90-d of supplementation with prebiotic and probiotic could alter mRNA responsible for inflammation and subsequently metabolic health in weight stable overweight adults. Participants were advised to not change their diet or exercise habits during the study. All protocols were approved by the University IRB and participants gave written informed consent. Participants were randomly assigned to either placebo (N=7; rice flour) or combined (N=8) prebiotic (PreticX® Xylooligosaccharide; 0.8 g/d; ADIP) and probiotic (MegaDuo® Bacillus subtilis HU58 and Bacillus coagulans SC-208; 3 Billion CFU/d) and measurements were made at baseline, 30, 60, and 90-d. Whole body DXA scans (GE iDXA®) and blood 574-plex mRNA analysis (Nanostring®) were used to generate primary outcomes. Compared to placebo, supplementation was associated with a 36% reduction in visceral adipose tissue (p = 0.001). Supplement resulted in significant, differential expression of 15 mRNA associated with adipose tissue inflammation, systemic inflammation, and/or chronic disease risk. The key findings support that 90-d prebiotic/probiotic supplementation may be associated with an improved metabolic health, reduced adipose tissue inflammation, reduced systemic inflammation, and …
Date: December 2021
Creator: Tanner, Elizabeth A.
System: The UNT Digital Library